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ABSTRACT

Let M be a convex body in R? with Ci boundary. Polytopal approxi-
mation of M with respect to the syminetric difference metric (or the L
metric) is considered, if the approximating polytope has at most n facets
(or at most n vertices). The asymptotic behavior of the distance of the

—2
best approximating polytope is well-known; it is of order n9=1. This

—2 -1
paper provides an estimate of order nd-1 *8a7 for the error term.

1. Introduction

Assume that M is a convex body with Ci boundary, namely, the boundary is C?
and the GauB3-Kronecker curvature is positive everywhere. Let § be either the
symmetric difference metric or the L, metric (see below for definition). Consider
the polytope P, (or P(,)) with at most n vertices (at most n facets) minimizing
O(M, P,,) (or 6(M, P(,y)). Since the middle of the century, much effort and many
brilliant ideas have been put into obtaining asymptotic formulae for 6(M, P,,)
and 6(M, Pr,)) as n tends to infinity. The investigations were started by Laszlé
Fejes T6th (in dimensions 2 and 3, cf. [6]), and continued by McClure and Vitale
in the plane, cf. [17]. The higher dimensional analogues needed new ideas. It was
P. M. Gruber who first obtained asymptotic formulae (after the breakthrough
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by R. Schneider for the Hausdorff metric, which is easier to handle). By now,
a whole theory has been developed by P. M. Gruber, R. Schneider, S. Glasauer
and M. Ludwig (see the comprehensive surveys [11] and [12] for the history and
for the state of art of this field).

The central problem of this paper is to estimate the error of the asymptotic
formulae as n tends to infnity.

Note that the support function of a convex body K is defined as hx(u) =
maxzck{Z,u). Let M and P be convex bodies.

SYMMETRIC DIFFERENCE METRIC: d&s(M, P) is the volume of the symmetric
difference of M and P.

Ly METRIC, p > 11 6,(M, P) = (fsars |has(u) — hp(u))? du)?.

If P C M then 6;(M, P) is actually proportional to the deviation of the mean
width, while minimizing d¢(M, P) is equivalent to maximizing V(P). On the
other hand, the L, metric is a useful tool for stability of geometric inequalities
(see H. Groemer [8]).

Assume that the boundary OM of the convex body M is C? (for definition
and related notions, see R. Schneider [18], or the beginning of Section 3). Denote
the second fundamental form at £ € OM by Q., and hence the Gaufi—Kronecker
curvature is k() = det Q. Naturally, both Q. and x(z) are continuous functions
of x € OM. The convexity of M yields that Q. (x(z)) is positive semidefinite
(non-negative).

We say that M is C2 if Q, is positive definite at each z € 3M;; or equivalently,
k(x) is positive at each ¢ € OM. The basic reference about the properties of
smooth convex bodies is R. Schneider [18].

The paper deals with a convex body M such that Q, is a Lipschitz function
of z € M. Observe that this property is guaranteed if 8M is C3.

First we consider the symmetric difference metric. If P, (P(,)) is the polytope
with at most n vertices (facets) minimizing g(M, P,) (ds(M, Pr))) then (see
M. Ludwig [15])

1 L \FT
(1) ds(M,P,) ~ —ldelg- </ n(z)mdm> C——,

2 oM na-1

1. .. 1 & 1
(2) (SS(M, P(n)) ~ 5 ldIVd_l . (/3M K‘,(CE)mdiE) . ;E

Here ldel;_; and ldivg_; are constants defined in R4-1, and independent of
M and n. The expression [y, n(x)ﬁfdz is the so-called affine surface area
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of M, and it is invariant under volume preserving affine transformations (see
W. Blaschke [2], E. Lutwak [16] or K. Leichtweif§ [13]).

Formulae analogous to (1) and (2) were proved earlier assuming that P, is
inscribed (cf. P. M. Gruber [9]), or that Py is circumscribed (cf. P. M. Gruber
[10]). Here we also consider the cases if P, is circumscribed, or Py, is inscribed.

Our aim is to estimate the order of the error term. By O(-) we mean the
Landau symbol where the implied constant depends on M.

THEOREM 1: Assume that OM is C2 and the second fundamental form Q, is
a Lipschitz function of z. If P, (P(,y) is the polytope with at most n vertices
(facets) minimizing 6g(M, P,) (6s(M, Pn))) then

d+1
1

55(M,Po) = (140 (niat)). %Meld_l : (/BM n(z)?dx> i —

(1+0 (ni‘r)) : %1divd_1 : (/Wn(z)zi"ldz)% : ndl%

One may impose the additional condition that the polytope is inscribed or

-

5S(M1 P(n))

circumscribed.

In the planar case, M. Ludwig managed to verify the formula

S5, Ba) = aa(M) o +as(0) - 55 +0 (%)
where az(M) is given above, and a4(M) is a certain affine invariant function of
M (see [14]). This points to the conjecture of P. M. Gruber (see [12]) that if
OM is sufficiently smooth in R? then there exists a series expansion of §g(M, P,)
(and probably also for the other metrics used in polytopal approximation).

Next we turn to the L; metric. It turns out that the problem is closely related

to approximation by dg, as an argument of S. Glasauer shows (see S. Glasauer
and P. M. Gruber [7], or Section 4).

THEOREM 2: Assume that OM is C’i and the second fundamental form Q. is
a Lipschitz function of z. If P, (P,) is the polytope with at most n vertices
(facets) minimizing 6;(M, P,,) (61(M, P(5)) then

Hh(M,P,) = (1 +0 (ns;d}f)) . %kiivd_l . (/3 ”(m)ﬁdx)m 1
M

d+1
w1 g1
51(M,Py) = (1+o(na’v)).§1deld_1-(/E)Mn(x)ﬁdz) -

3
LY
S
M
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One may impose the additional condition that the polytope is inscribed or
circumscribed.

Observe that the role of 1div and ldel has been interchanged. This not an
accident, since the correspondence between §; and ég is via polarity (see Sec-
tion 4). In particular, the constants in the asymptotic formulae for ds and for 4,
correspond to each other; namely, the role of vertices and facets, and the words
inscribed and circumscribed should be interchanged in the statements.

If Q, is assumed to be only continuous then the corresponding asymptotic
formulae were proved in S. Glasauer and P. M. Gruber [7] and M. Ludwig [15].

Finally, we consider the L, metric, p > 1, only if the polytope is inscribed, and
the number of vertices is bounded. Let M be C2, and for p > 1, assume that
P, C M is the polytope with n vertices minimizing 6,(M, P,,). Then we prove
(following the method of S. Glasauer and P. M. Gruber {7]) that

d—142
1 _ Ec=)
(3) 8p(M, Py) ~ = diva_ - ( / k(z) T14%5 dm) L
2 oM nd-1T
We strengthen this formula if the second fundamental form is Lipschitz:

THEOREM 3: Assume that M is C2 and the second fundamental form Q. is a

Lipschitz function of z. If p > 1 and P, C M is the polytope with at most n
vertices minimizing 6,(M, P,) then

= a1 %—(21};24)1 1

55, = (140 (0575)) o ([ n() B8 a) ™

oM nd-t

Observe that the error term gets better if p increases. In particular, if say
p > d then the exponent in the error term is of order 1/d. This was proved in
the case of Hausdorff metric (p = oo) in K. Béroczky, Jr. [4].

In order to get any error term, it seems to be essential that the fundamental
form is Lipschitz and positive definite. On the other hand, the asymptotic for-
mulae can be proved even allowing the curvature to be zero (see K. Béréczky, Jr.
[3])-

The paper is organized as follows: First we prove Theorem 1 in Sections 2
and 3. The two theorems about the L, metrics are verified in Section 4, relying
heavily on Theorem 1 and its proof.

We close the paper showing that the analogous formulae hold for general convex
hypersurfaces (see Corollary 2) with the appropriate definition of distances and
approximating polytopal hypersurfaces.
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Some words about notation: We write f <« g or f = O{g) if there exists a
constant ¢ > 0 depending on M such that |f| <c-g. If f < g and f > g then
write f =~ g. Note the constants in Sections 2.1, 2.2 and 2.3 depend only on d.

In R?, we fix a scalar product {-,-,), and denote by || - || the corresponding
norm. The induced quadratic form defined in R?~! is denoted by ¢y. When
speaking about inradius, etc. of bodies in R~ we mean the metric determined
by go.

On the other hand, we frequently use some other positive definite quadratic
form ¢q. If we use the metric defined by ¢ then we say that inradius, it etc. is
defined with respect to q.

2. Symmetric difference metric: power diagrams

Let M be a convex body with C% boundary.

We present the proof only for the case if the number of vertices is given. The
arguments can be easily transferred to the case if the number of facets is bounded,
and the necessary changes are explained at the end of the section.

Note that when piecing patches, we take the convex hull of the patches if the
number of vertices is bounded, and intersection of convex shapes corresponding
to the patches if the number of facets is bounded. If M is a convex body and P
and @ are polytopes then

0s(M, PN Q) < ds(M,P)+d5(M,Q).

On the other hand, it is much harder to control ds(M,conv(P,Q)) in terms
of 65(M, P) and ds(M,Q). Therefore the case where the number of vertices is
bounded is more complicated. The only exception is if the polytopes are supposed
to be inscribed. Then one does not have to worry about piecing patches, since
the larger the polytope the smaller the distance.

The asymptotic formula (1) encodes two statements: First, that for any € > 0
and large n, the best approximating polytope P, satisfies

a1
1 d—1
k(z) d_de) - —

Bs(M, Pa) > (1= €) - 3 Idely_y ( /

oM

This estimate we call lower bound. On the other hand, for any large n we
construct a polytope @, with at most n vertices such that

a1
1 d—1
&(x) md:v) C—

65(M,Qn) < (1 +¢)- %ldeldﬁl : (/6

M
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This estimate we call upper bound.

In case of Theorem 1, £ will be of the form O (nﬁf)

The proof of (1) and Theorem 1 breaks down into two main steps: First we
consider polytopal approximation of paraboloids, which in turn leads to power
diagrams in R?~!. Then subdivide &M into almost paraboloid patches, transfer
the results about paraboloids to these patches, and piece the estimates for the
patches into a global estimate.

2.1 POWER DIAGRAMS.

Let g be a positive definite quadratic form. Power diagrams are discussed say
in [1] from an algorithmic prospective. The term Laguerre tiling is also used (this
is the explanation for the “1” in ldel and ldiv). Actually, “del” stands in honour
of Delone, and “div” stands in honour Dirichlet, in conjunction with the tilings
named after them.

For us, a power diagram T = {II;,a;,;} with respect to ¢ is a finite family
-of convex, compact (d — 1)-polytopes {II;}, centers {a;} and real numbers {r;}
such that the interiors of the II;’s are disjoint, and q(z —a;) —r; < g(z—a;) —7;
holds if z € II;. Here the II;’s are the facets of T, and in general, the union of
the k-faces is the set of k-faces of T. We say that T covers a set C if the union
of the facets in T' covers C.

Call T circumscribed if 7; < 0, and inscribed if g{z — a;) < 7; holds for z € I1;.

Denote by T the union of all II; and the ellipsoids ¢(z — a;) < r;, and define

Q; ={zeTt: q(z— a;) —ri < q(z — a;) — r; for each i}-

The following observation connects power diagrams to polytopal approxima-
tion: Let Y be the union of a subfamily {F;} of facets of a polytope P in R? so
that the exterior normals point downwards (we assume that R?~! is embedded
into R?). Define a; so that the tangent hyperplane at (a;,g(a;)) to the graph
of q is parallel to affF;. Then there exists some r; so that affF; is the graph of
q(a;) + la,(z — a;) + 7; where I, is the derivative of ¢ at a;. Denote by II; the
orthogonal projection of F; into R¥~!, and assume that Y is the graph of the
piecewise linear function ;. Since q(2) = ¢(a;)+1o, (2 —a;) +q(z — a;), we deduce
that

f(2) —o(2) = q(z — a;) = 7s.
In particular, T = {II;,a;,7;} is a power diagram with respect to q. For

example, the ellipsoids g(z — a;) < r; are the projections of the caps cut off by
affF; from the graph of q.
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This process can be reversed, and we denote by @ the piecewise linear function
on T* associated to 7.

Observe that T is circumseribed (inscribed) if and only if Y is below (above)
the graph of gq.

Finally, define

o) =Y /Q lg(z — a5) — il dz,

and for any convex body C in R*~! set

v,(C,q) = inf _{v(T): the number of vertices in C is at most n},
TcoversJ
vy (Crq) = . inf {v(T): the number of tiles is at most n}.
coversJ

For A > 0, denote by AT the power diagram {)\Hi,)\ai,)\Qri} with respect to
the same quadratic form ¢. Observe that

v(AT) = A4 (7).

Denote the unit ball in R4"! by B, and the (d — 1)-dimensional Lebesgue
measure by |- |.

For a convex body C in R¥™1, let o(C) be the inradius of C. Now if ¢t < g(C)
then

IC|
(4) 0C +tBl < o5t

The next estimate is contained implicitly in M. Ludwig [15], but we prefer to
give a quick proof for the sake of completeness.

PROPOSITION 2.1: Let q be a positive definite quadratic form, and denote by ¢
the inradius of C with respect to g. If n- ¢! > |C| then

v (C,q) = (detq)ﬁ . |C|Z—f—‘1 . _12_

nd—l

Proof: We may assume that ¢ = ¢g. Then the upper bound follows easily
by taking say power diagrams constructed with the help of a square grid. The
condition on n ensures that the boundary does not cause problems (see (4)).

Turning to the lower bound, let the power diagram T = {II;,a;,7;} cover C
with having at most n vertices in C. We may assume that each tile is a simplex.
For each vertex u, define St(x) as the union of the tiles of 7" containing . Observe
that St(u) is starshaped with respect to u, namely, conv{u,y} is a subset of S
for any y € S. In addition, the intersection of any ray starting from u and St(u)
is contained in one of the tiles.
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For the time being, assume that u is the origin. If z € II; then set a(z) = a;
and r(z) = r; so that, along any open ray starting from u, a(z) and r(z) are
constants. Denote by R(v), v € R472| the radial function of St(u).

Note that

1
min / [(t—a)? 7] 2 dt >
0

r .
[min - - min /_ (¢t - a) —rldt> 1.

€ a,r€R 1-1
d

Therefore using polar coordinates and Holder’s inequality yields that

_/St(u) l(z —a(2))? - r(z)l dz > /;d_z Rlu)**'du > (/Sd-2 R(u)d—ldu) 411 |

The last expression is & |St(u){%i Since each tile is a simplex, we deduce that

d-oT) > Y |Stw)] .

w€C vertex

On the other hand, we have at most n starshaped set St(u) and

> 1Stw)] > |Cl.

u€C vertex

Therefore Jensen’s inequality yields the proposition. 1

2.2 SOME AUXILIARY STATEMENTS.

First we show that a hypersurface well approximating OM lies really close to
oM

PROPOSITION 2.2: Assume that on an open subset of R*~!, ¢ is a positive
definite quadratic form and f is a C? function such that the quadratic form
g, representing the second derivative of f at z satisfies ¢ < %qz < 2q for any z.
If p is a convex function and |f(a) — ¢(a)| > R for some R > 0 then

/ 1£(2) - p(2)|dz > (detq)~} - R

g(z—a)<R

Proof: 'We may assume that ¢ = ¢g. Subtracting the equation of the tangent
hyperplane at {a, f(a)) yields that we may also assume that the derivative of f is
zero at a. Using polar coordinates around a in R4-1 reduces the problem to the
following one: If f and ¢ are convex, increasing functions on [0,v/R] such that
£(0) =0, |p(0)] > Rand 1 < 3 f"(t) <2 then

\/E d+1
/ () - o@®)[t=2dt > RS,
0
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Here we may assume that ¢(0) = —R. If » minimizes the integral above, then
for some 0 < ¢y < t1, @ is linear on [0,¢4], f(t:) = ¢(t;), and

to tl
/ tildt = / 41 dt.
0 to

Now t; > VR yields that to = 274 .¢; > +/R. We deduce that e(t) <0 if
t < ¢v/R holds for some ¢ depending on d, which in turn yields the Proposition.
|

For piecing lower bounds, we use the following consequence of Holder’s
inequality: Assume that u;, n;, i = 1,...,k, are positive numbers. Then

d+1

PESUN | ! 1
(5) T z 2 Zui TS =
nit i (32 ma) ™ T

On the other hand, when piecing polytopal patches, we need the following

B

statement (see the remarks about piecing at the beginning of Section 2):

PROPOSITION 2.3: Let {p;} and ¢ form a finite family of convex functions in
R4~1 such that the domain &; (o) of ; (of @) is a simplicial complex and ¢; ()
is linear on each simplex. Assume that there exist subcomplices ¢; of &; such
that the o;’s cover o, the graph of ¢ is the lower convex envelope of the graphs
of the p; |0i , and If the simplex Il of ¢ intersects o; then Il is covered by &;.

Now let g be a positive definite quadratic form. Assume that f is a C? function
on the union of the &;’s such that the quadratic form q, representing the second
derivative of f at z satisfies q¢ < %qz < 2q for any z. Then

inte|f(2) — (2)] dz < Z/ |f(2) 2)| dz.

Proof: 1t is sufficient to prove that for any simplex II in o, the inequality

(6) INCE oz < 3 [ 106 - wialids

IInNg;
holds.
Let II be a simplex of 0. Define v € IT by
(7) (v) = i(v)] = max{|f(2) - ()]}

First assume that f{v) < ¢{v), and let II* be the set of z € I such that
f(2) < p(2). Then (7) yields that

[ 1@ —eeds < [ o) fe) e
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and hence (6) follows as ¢ < ; for each i.

Next assume that f ( ) > p(v). Then v is a vertex of II, and there exists a ;
such that p(v) = . We prove that

(8) /lf |dz<</ 1£(2) — i) dz.

Adding a linear function to each function, and using polar coordianates, the
problem can be translated in the following one dimensional one: Assume that

1< f"(t) <2 on [a,b], ¢ is a constant and ¢; is an increasing convex function.
If pi(a) = ¢ < f(a), and

I[I;ffflf( ) = ()] = fla) - o(a),
then

b b
[0 -l < [0 - wioletar
We may assume that f(t) > ¢ for ¢t € [a,b]. Set ¢ = maxye, 5 {wi(t) < f(t)}.
If c < (a+b)/2 then
b b
[ 1w -ttt < [ 150 - poieta

and if ¢ > (a + b)/2 then

b C
/ 17(0) - pltdt < / |£ () = u(t)] ¢4t
e a
With this, the proof of the proposition is complete. n

2.3 COVERING A PARALLELOTOPE.

Let W be the unit cube W = [—1,1]9~1 in R?~!. Assume that T is a power
diagram covering W such that v(T) < 2-v,(W, go). We deduce by Proposition 2.1
and Proposition 2.2 that there exists a positive o depending on d such that for
any z € T, we have

®) lgo(z) — er(2)| < - nza——-fr?m,

On the other hand, there exists a v > 0 depending on a such that if (9) holds
then, for any €, associated to a tile II; of T', we have

(10) diam Q; < 7-nza‘—ﬁfm$.

First we consider a general approximation. The error term in our formulae is
—1
usually of the form O(nm) for certain . We do not make an attempt to find
the optimal a.
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PROPOSITION 2.4:

on(W, o) = (1 +0 (ns;df)) dely_; -

2
mnd-1

for the suitable ldel;_; depending only on d.

Proof: Denote by Tn a power diagram covering W, having at most n vertices in
W and satisfying v(T},) = vn(W, qo). Define ¢, = v, (W, qo) - =
First we claim that if m > logk and m% 'k < N < (m + 1)¢~1k then

1
m k@-DEFD

Here the condition m > log k ensures that m tends to infinity with k.
Set

-2
€ = k@-nlEn

and denote by Ty, = {II;, ai, 7; }i=1,...: the power diagram, which consists of the
tiles of (1+2’7-6)Tk intersecting W. Then v(Ty) < (1+O0(e))vr(W, qo), T covers
W and the number of all the vertices of T}, is at most k (independent of whether
they are in W).

Denote T;7\(1 — 47 - )W by T}, which is contained in (1 + 4y - &)W if k is
large. In addition, the minimality of v(T}) yields that

—ai)? —ri|dz (T,
(12) ;/n,-rm; [z —a:)? — il dz < e - v(T})

Let y1,...,Yme be the vectors such that y; + # W,. ... Yma + i W tiles W.
For j = 1,...,m%, denote by @; the piecewise linear function associated to the
power diagram y; + #Tk. Consider the convex hull of the union of the vertices of
the graph of each ;. Now there exists a power diagram Ty such that the graph
of ¢, over the tiles of Ty is the lower envelope of the convex hull.

Readily Ty covers W, and it has at most m?k < N vertices. For any z € T]\;,
we have

|90(2) = 1y (2)] < @ - (k) @iwFD

because this property holds for each ¢;. Therefore (10) yields that if a vertex of
a tile II is coming from y; + iTk then II is covered by the tiles of

1 .
yi+— (1+2y-¢) Tj.
m
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In particular, Proposition 2.3 can be applied, and (12) yields that
o(Tw) < (140 (€)) - ek - (mPk) 7.

In turn, we conclude (11).

We deduce by Proposition 2.1 that the sequence {c,} is bounded from below
and above by positive numbers. Thus (11) yields that ldelg—; = limp,_, « ¢y, exists
and positive. In addition,

(13) Cn > (1 -0 (nﬁm)) dely_;.

Next we prove that for large k, there exists kg with

(14) k173 < kg < KM
such that
(15) CN > (1—0(1657)) * Ckq

holds for N = ig”ﬁ, and kg tends to infinity with k.
Set m = k117 | which satisfies N = m?~'k. Consider the tiling {y; + =W}
of W by the m¢~! translates of %W Observe that if I1 is a facet of Ty then

diamll < v - N @@ = T 1
mdaFr M

Denote by N; the number of facets of Tn intersecting

1
v (-5 2
mdat /) M

where no facet of TN meets two of the W;’s.

Call an N; all right if kl— 24 <N; < kl"'ElT. We claim that there exists an all
right N; satisfying cy; > {1+ ka2 CN.

Suppose to the contrary that such an N; does not exist. Observe that the
number of large N;’s with N; > k't is readily at most m¢-1k@. On the
other hand, Proposition 2.1 applied to W and the W;’s yields that the number of
Nj’s with N; < k=74 is also O (md‘lkﬁ'). In particular, the volume covered
by the W;’s corresponding to all right N;’s is 1 — O(kﬁ) .

Now (5) and the indirect hypothesis yield for large k that

o(F) > (14k5) (1-0 () -0 (T) > o (Bw).
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This is absurd, therefore the all right N; with ey, < (1 + k%> cn can be chosen
as the ko in (15).

Finally, we claim that for large n, there exists N(n) > nl+da satisfying
(16) CN(n) > (1 -0 (nﬁlf)) Cp.

In order to prove the claim, apply (15) with k = n1~2¢. We deduce that there
exists N(n) > n'*3a such that

CN(n) > (1 -0 (nﬁf)) Ckg-

On the other hand, (11) yields that
e (105

because ko satisfies (14). In turn, we deduce the claim.

Now for any large n, construct a series {n;} with ng = n and n;41 = N(ny).
Applying (16) to this series shows that ldely_; > (1 - O(nﬁ))cn, and hence
the proof of the proposition is finally complete. |

Now let P be a parallelotope such that the ratio of the circum- and the inradius
is at most 2v/d. Then the same argument can be repeated about vn(P, qo), using
the family {y; + L P}. In particular, we deduce

PROPOSITION 2.5: In R?~! let P be a parallelotope and let q be a positive
definite quadratic form. If the ratio of the circum- and the inradius with respect
to q is at most 2v/d then

1
— -
mnd-1

un(P,q) = (1 +0 (ns;d}f)) ‘dely_; - (det q) @1 - |P| 751 -

Remark: The proof shows that the same estimate holds even assuming that the
total number of vertices of the power diagram is at most » in Proposition 2.5,
and each tile intersects P.

If the power diagram is supposed to be inscribed (circumscribed) then the
analogue of Proposition 2.5 still holds, with the appropriate constant Cinscribed
(Ccircumscribed)- Note that Cingeribed Was baptized as dely—1 in P. M. Gruber [9].
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3. Symmetric difference metric: approximating the boundary

3.1 SUBDIVIDING THE BOUNDARY.

We describe the properties of the convex body M with Ci boundary we need
in the sequel: Identify the tangent hyperplane at £ € M with R¥™1. Then an
open neighborhood U of z in M is the graph of a convex C? function f defined
in the projection V of U into R%~1.

Denote by I, the derivative of f at z and by ¢, the quadratic form representing
the second derivative of f. Here Q, = qq, g, is positive definite since M is C2,
and actually g, is a Lipschitz function of z if and only if the second fundamental
form is Lipschitz on 8M. Fix some y € V. We deduce using the Taylor expansion
of f that

£(2) = 1) + (2 = ) + 50u(z — 9)

where w = y + t(z — y) for some 0 < ¢ < 1. In particular, the Gau-Kronecker
curvature at w = (z, f(z)) can be expressed as

det g,

k(w) = —————.
(1 + [1)2)

LEMMA 1: Assume that OM is C;{, Q. is a Lipschitz function of x on 8M, and
consider the positive Lipschitz functions 1 (p) in a neighborhood of &M in R?
(on OM ).

Then for large m, there exist pairs of open Jordan measurable subsets g C
f]g of M and hyperplanes Hg, quadratic forms gg and constants g with the
following properties: #{¥g} ~ m;

(i) either the distance between any two £p’s is > m#T and

o (-0(2)) w0

or any o C O0M with diamo < m@1 is contained in some {34} and

‘;/E dayis< (1+0()) [ stwyae,

In addition, call a ¥g boring if there exists an x € ¥z with distance at least

> m@71 from 0%, and z is contained also in another ¥g. Then

1
S [ wic—- [ @)

g boring s
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(i) 2~35 (X) is the graph of a C? function fg on some 5;; C Hg (®3 C Hp);

(iii) ®p is a parallelotope, |®g| = 1/m, the ratio of the circum- and inradius of
®p is at most 2v/d, and if z is in the boundary of 55 then the distance of
z and ®g is = mE_—_zl;

(iv) ifl, is the derivative of fg at z then ||l.|| = O( L );

(v) for the quadratic form gq, representing the second derivative of fg at z, we
have

1 _
49 < 50: < (140 (mT)) - g5

(vi) if z is in a neighborhood of ¥g in R? then

Yg < Plz) < (1 +0 (md%%)) -1hg.
Proof: We use in the proof that there exists some w > 0 depending on M such
that for any = € M and any tangent vector u at x, we have

wllull < Qa(w) <w™lul).

Denote by v(z) the exterior unit normal at & € M. There exist a finite family
{G;} of hyperplanes avoiding M and an open convex set Z; with full dimension
in each G; such that the following holds: Denote by X; the points of M on the
side of G; whose orthogonal projection into G; lands in X;, and let z; € X; be
the point such that v(z;) is normal to G;. Then {X;} cover M. In addition,
[{v(z), v(z;))| > 0.99 and 0.99Q,, < @, < 1.01Q,, hold if z € X;.

Now for large m, consider grids in each G; such that the grid in G; has a
fundamental parallelotope W; which is a (d — 1)-cube with respect to Q,, and
Wil = & 312

Fix i. Assume that {z3}, 8 € B; is the family of the points of the grid in G;
grid in Z;.

For some ( € B;, define g € X; to be the point which projects onto 23, and
let Hg be the tangent hyperplane at z3. Denote by Fj the family of points in
Hg whose projection into G; lies in zg + % W;.

If 3 € B; and the projection of X; into Hg intersects Fg then |Fj| = %, Fy
is a parallelotope, and the ratio of the circum- and the inradius of Fj3 is at most
1.5v/d. In particular, the inradius of Fj is > maT

The proof is presented only for the case if {£g} covers M (the proof for the
other case is analogous). Then &4 (:155) is defined by scaling Fj by a factor A

(A), where

1 ~ 2
A=14+—— and A=1+4 —F.
mda-1 md-1
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Then all the conditions (i),...,(vil) are satisfied if we replace &M by X;. The
existence of gg, etc. follows by the fact that (), etc. is Lipschitz.

Finally, construct the subfamily of {X3} satisfying the properties (i),...,(vi)
by induction on i: First, take all the patches associated to X;. Out of the patches
associated to X4, take ¥g if 25 + i Wi41 is not contained in the projection of
(X1 U---UX;)N X;41 into Gi41. The convexity of Z; yields that

|(0X; +t-BY)noM| <t

holds for each 7, and hence the patches we have constructed satisfy all conditions.
]

Remark: Assume that the only condition we have is that &M is continuous, and
=1

let € > 0. Then the same proof gives the statement above, only m7=1 should be

replaced by ¢ in (i),...,(vi).

3.2 POLYTOPES AND POWER DIAGRAMS.

So let @, be a Lipschitz function of £ € M. For both the upper bound and
the lower bound, apply Lemma 1 with m = n@ and o(x) = x(m)d—l—l (no need
for 1). In order to simplify notation, set

1

—.
nsd?

E =

Observe that if z € )~3g and = = (z, fg(2)) then the GauBi~Kronecker curvature
at x is

(17 (z) = — Sete

(L + )5
If F is a facet at ¥, consider the point (a, fg{a)) for a € Hg where the tangent

= (14 0(e)) - 2% det gg.

plane is parallel to aff F. Thus affF is parameterized as
vp(2) = fala) +lo(z —a) +r

for some r € R. Since fg(z) = fa{a) + la(z — @) + go(2 — a) by Taylor’s formula
where go(z — a) = 3qu(z — a) for some w between a and z, we have

(18)  fs(2) —9p(2) =ga(z—a) =7 and g <ga < (1+0(e)) gp.

Therefore we can transfer the estimates about power diagrams to the patches
¥, and the reverse. In this section, we associate power diagrams to a well
approximating polytope, and reverse. The corresponding calculations are left for
the next section.
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We start with the lower bound, and hence the closures of f]g’s are pairwise
disjoint. For large n, let P, be the polytope with at most n vertices minimizing
ds(M, P,). .

It is easy to construct examples of polytopes showing that dg(M, P} €« n=1.
Since the boundary of M is Ci, we may assume by Proposition 2.2 that if F is
a facet of P, then

(19) diamF, diam (aff F N OM) <« cEy

Fix some 3. Let ¢z be the piecewise linear function on 55 such that the part of
OP, above &5 is the graph of ¢g. Consider the family {(u;, ps(u;))} of vertices
of the graph of @g. There exists a power diagram Tg = {I1;, a;,r;} with respect
to g such that {u;} form the set of vertices of ffg; namely, if u; € II; then

folus) = o(u;) = qp(u; — ai) — 74

Now the associated power diagram T with respect to gg is defined so that the
tiles of T are the II;’s which intersect 5. The corresponding part Y3 of 9P, is
the graph of ¢ above these tiles. Denote the number vertices of T3 in ®g by ng.

Note that m=1 = n@ (7, We deduce by (19) and Lemma 1 that Tﬁ+ C (i;g
for large n, and the distance of T and 0By is > nEAET

In order to prove the upper bound we reverse the process: Define ng so that
Y_png = n and ng is proportional to (det qg)l 7|®g| up to 1+ O(e). In particular,
ng R n=¥2. Now |®g| = (1+O(E)) |® 3| holds by Lemma 1, and hence Proposition

2.5 yields a power diagram Tg = {I;,a;,r;} covering @5 such that number of
vertices in <I>ﬂ is at most ng and

o(Ts) < (14 O(e)) - Idely_ - (det gg) TT - |Bp| T3 - —

Define pp as the piecewise linear function on ®4 such that the vertices of the
graph of g are formed by the family {(v, f3(v))} where v is some vertex of T,
and if u is a vertex of II; then

fo(u) — pp(u) = gp(u — a;) — ;.

Define T to be the power diagram of the tiles II; which intersect ®g and Yj is
the graph of pg above these tiles.

Since the analogue of (19) is satisfied by the facets of T3, Lemma 1 yields that
Ty C &4, and the distance of T4 and By is > e

Finally, define @, as the convex hull of the Yj's.
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3.3 PIECING THE ESTIMATES.

First we prove a technical, but extremely useful statement.

PROPOSITION 3.1: For any a € R, let g, be a continuous, non-negative
function. Consider ai,...,am € R¥! r ... rn, € R and Jordan measur-
able sets Qy,...,Q, such that Qy,...,Q., cover the sets g,,(z — a;) < r; and
Ga;(z — @;) — s = min; g, (2 — a;) —r; for z € Q.

Assume that q is a positive definite quadratic form, and q(2 —a) < g.(z —a) <

2q(2 — a) for every a. Then

z/ﬂ.gai(z—ai)dz«Z/Q'lgai(z—ai)-nl dz.

Proof: Denote by o¢ the part of ¢ = [J2; which is contained in the union of
the sets gq,(z — a;) < 2ry, and set 01 = o\0p. Readily,

/gai(z—ai)szZ-/ 190, {z — ai) — 14l dz.
o1 (251

Now number 71, ..., 7y, so that r; is maximal, and g,,(z —a;) <7, i=1,...1,
is a maximal disjoint family with the property that if the set gq; (2 — a;) < r;
intersects the set g,,(z — a;) < r; for j > ¢ then r; < r;. We deduce that

!
/ Jda.(z —a)dz K Z/ qg(z —a;)dz
a0 im0 Y a(z—ai)<r;

!
< Z/ |9a; (z — a;) — ri| dz
i=0

a;(2—as)<r;
where the last expression is readily at most fao [9a;(z — a;) —ri| dz. |

Now we have arrived at the core of the argument; namely, that estimates can
be transferred from paraboloids to “almost paraboloids”.

We use the set up of the previous section, and hence T3, ng, and pg are defined
as above.

PROPOSITION 3.2:
(1-0()- / |f5(2) — @s(2)|dz < v(Tp) < (1+ O(e)) - /~ |f8(2) — wp(2)| d.
o5 P

Proof: We use the notions fg, ¢g, T and qg without index. For a vertex u of
II;, set A(u) = q(u — a;) — i, which is in turn equal to f(u) — ¢(u) by definition.
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First we claim that for any z € II;,

(20) [£(2) = w(2)] = |g(z — a;) — r:| + O(e) maxq(y - ;).
We may assume that f'(a;) = 0 and q; is the origin in R?~!. Tt is sufficient to
prove that
(21) lp(2) = 73l = Ole) max q(y — a;).
Let u1,...,uq be the vertices of II; and let v, ..., vq be the vertices of T3 so that
z = Z]- S3U; = Zj tjvj and

p(z) = Zt — A(vj))

with 3°.s; = 3.t; = 1 and s;,t; > 0. Since 7, = gq(u;) — Ay;) and
q(v;j) — A(v;) > r; hold for j = 1,...,d, we have

p(z) 2> th(Q(vj) ZSJ — A(y;)) and
Zsj(f(w)— ().

We deduce (21) by (18), and in turn (20) follows.
The inequality |II;| - max,ex; ¢(2) < [ ¢(2) dz and (20) yield that

IA

¢(2)

/lf !dz—/ qu—az)-rzldz-i-O()/ g(z — a;) dz.

I

Now the lower bound for v(T) is a consequence of Proposition 3.1.
Turning to the upper bound for v(T), denote by II; the set of z where
f(z) = ¢(2) = ga,(z — a;) — r;. Analogously as above, we obtain the formula

/ lg(z — a;) —n[dz—/ |f(2) ldzwLO()‘/~ 9a; (2 — a;) dz.
Denote by I'* the set of indices j with ﬁ NQ; # 0 for some £2; corresponding to
T'. Then one can define the sets Q for j € I* with respect to {HJ, 5,75y Ga, }jeIe-
Since (J;¢ 1. {Q } is contained in <I>ﬁ for large n, we deduce the upper bound for

v(T), again by Proposition 3.1. |

First we prove the upper bound in Theorem 1. When estimating 6(M, Q,,),
we have to be careful what happens when piecing. We separate the part of the
boundary corresponding to boring patches; here Proposition 2.3 and Lemma 1
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yield that this part causes a small error. So assume that Xz is not boring. Then
on the part which is possibly multiple covered the integral of |f — @g| is small
(see (12) in the proof of Proposition 2.4). We deduce by Proposition 3.2 that

8(M,Qn) < (1+0(e)) - > v(Tp).
B8

Here ng = n%%, and hence Proposition 2.5 and (17) yield that

M, Q,) < (1+0/(e)) - 1delg—y 'Z(detq{;)ﬁ_l . l@glgf—i . 12
B ni !
B
d+1
1 . =T 1
= (1 +O(E)) - = ldelg_4 2 (/ ;g(_'z;)d_ﬂdz) C—
2 z o1
B s ng

Finally, we conclude the upper bound in Theorem 1 by the choice of ng.
Now we turn to the lower bound in Theorem 1. We deduce by Proposition 3.2
that
5(M,Pa) > (1+0(e) - Y v(Tp).
B
Now Proposition 2.5 yields that

o am 1
SM,PY>(1+0() S Mdelas- (detgp)™T - |@p|TT . .
d31(,_ 1 nit
nﬁznm(’—n) B

We deduce by és(M,P,) < na=1 and Proposition 2.1 applied to the ®4’s
that the number of ng with ng < n @2 (1=32) ig at most n@2(1~28) Now some
simple calculations and Lemma 1 yield that the area covered by 3’s with ng >
naz(-aa) i (1+ O (g))-|@M|. Therefore (17) and (5) yield the lower bound in
Theorem 1. Therefore the proof is complete in case of general approximation if
the number of vertices is bounded.

Remark: Assume that 9M is Ci. Then we use the modified version of Lemma 1,
as it is described in the Remark after it. Now the proof above yields the asymp-
totic formula (1).

3.4 INSCRIBED AND CIRCUMSCRIBED POLYTOPES.

For inscribed (circumscribed) polytopes, we use inscribed (circumscribed)
power diagrams. Similar arguments work as above, only one needs a little care
whether piecing keeps the property being inscribed (circumscribed).
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For inscribed polytopes, the same argument works word by word, as an in-
scribed polytope gives rise to inscribed power diagrams, and the reverse.

Let us consider the case of circumscribed polytopes. We claim that if P, is a
circumscribed polytope then each T is a circumscribed power diagram. To verify
this statement, denote by ¢* the piecewise linear function which is associated
to T as a power diagram with respect to gg. It is sufficient to prove that if
{(uj, pp(u;))}, j =1,...,d are vertices of a facet of Y then conv{(uj;, pj(u;))}
is below the graph of ¢gs. This follows as the graph of (g is below the graph of
fyap(uy) — ¢*(u;) = f(u;) —o(u;) and 1g, > gg for each z. Therefore the lower
bounds during the course of the proof can be proved exactly in the same way as
above.

In case of the upper bound, let v > 0 be the constant such that %qz <
(1 + ve)gs. The main trick is that we now define T with respect to (1 + ve)qgg.
This causes only a multiplicative error of 1 + O(g) in the estimate. Now the
argument presented above shows that Yj is circumscribed.

3.5 THE CASE OF THE FACETS.

The arguments are basically the same, actually somewhat simpler. Say in this
case, we consider power diagrams with at most n tiles.

The correspondence between polytopal hypersurfaces and power diagrams is
given by (18). More precisely, {F;}, ¢ = 1,...,ng is the family of facets such
that their projection into Hg intersects ®g. To each F; and the corresponding a;
and r;, we have that affF; is the graph of fg(a;) + s, (# — a;) + r;. When piecing
patches in the case of facets, we take intersection of the half spaces, which is
equivalent to considering the union of all {a;,7;} if the pieces are assigned with
respect to the same quadratic form.

The proof works the analogous way for general approximation. No changes
are needed in the argument when passing from general approximation to the
circumscribed case (here one can actually assume that r; = 0).

Next, consider the lower bound for inscribed polytopes. Now %qz > qp yields
that the resulting power diagram is inscribed. More precisely, if (y, fa(y)) is
below the graph of fg(a;) + la; (2 — a;) + 7; then (y,gs(y)) is below the graph of
ga{a;) + la,(z — a;) + r;. Therefore exactly the same argument applies as in the
general case.

Finally, for the lower bound, define Ty with respect to (1+ ye)gg where %qz <
(1 + ve)gga, and then the resulting polytope is inscribed.
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3.6 THE §,, METRIC.

There exists a general version of the symmetric difference metric: If w(z) is a
positive continuous function in a neighbourhood of 8K in R?, then 6, (K, P) is
the integral of w(z) on the symmetric difference of K and P.

Similar arguments as for dg yield (see 12) that if P, is the polytope with at
most n vertices minimizing d,,(M, P,) then

d+1
d

(22) Jw(M, Pn) ~ %ldeld—l . (A w(x)TK/(.’E)d#-de) d—1 ‘ -

M nd—1

-

A
|

Now (22) can be strengthened similarly for the case of the symmetric difference
metric. One only needs to assume that w(z) is constant in a neighbourhood of
Y5 up to 1+ O(e) for suitable €.

COROLLARY 1: Assume that OM is C’i and the second fundamental form Q,
is a Lipschitz function of z, and w is a positive Lipschitz function in an open
neighbourhood of M. If P, (Py,) is the polytope with at most n vertices
(facets) minimizing 8,,(M, P,) then

- 1 1 1 -1 1
6u(M,P,) = (1+O(n§%))-—ldeld_1-(/ w(w)%n(av)mdw) —
2 oM nd-t
1 &
=1 a+1 1 -
S (M, Ppy) = {14+ 0 {nsaZ } |- - 1divg- (/ w(z) 1 k(z mdz) —.
(M, Poy) = (140 (nit) ) -3 Mivamr{ [ w(@) & n(z) —

One may impose the additional condition that P, is inscribed, or that P, is
circumscribed.

4. The L, metric
4.1 THE L, METRIC.

In this case, the main tool is polarity. Since §;(M, P) is invariant under the
translation of M and P by the same vector, we may asssume that the origin o
lies in the interior of M.

Define the polar M* of M as

M* ={z: (z,y) <1 holds Vye€ M}

Then M** = M and OM* is also C2 (see [18]).

Assume that P is a polytope containing o in its interior. Then there exists a
one to one correspondence between the k-faces of P and the (d — 1 — k)-faces of
P*, and P is circumscribed around M if and only if P* is inscribed into M.
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Set w(z) = 1/||z||d;+1 for z # 0. Now the main observation is that (see
S. Glasauer and P. M. Gruber [7])

(23) 81(M, P) = 6, (M™, P7).

This way the problem of best approximation of X with respect to é; bounding
the number of k-faces is translated into best approximation of X* with respect
to 8., bounding the number of (d — 1 — k)-faces.

Therefore (23), the formula (see S. Glasauer and P. M. Gruber [7])

1
/ : -K;M*(.’E)%Hdw:/ nM(:z:)d;ildac
oM~ llz|| 7T aM

and Corollary 1 yield Theorem 2.

4.1 THE Ly METRIC, p > 1.

Let ¢ be a positive definite quadratic form. What may sound as a surprise (but
remember the case of the L; metric), we consider circumscribed power diagrams
with given number of tiles. Assume that each r; = 0, and hence a power diagram
in R4~1 is given as T = {II;,a;}, and Q; = II;. For p > 1, set

o(T) = Z/ q(z — a;)Pdz,
i
and hence v!(T) = v(T). Observe that for A > 0,
VP(AT) = X712 P(T),
If C is a convex body in R%~! then define
vf’n)(C, g) = min {vP(T'): T covers C' and has at most n tiles}.

Note that it T = {II;, a;} is a power diagram with at most n tiles and covering
C, and v?(T) < 2vfn)(C, q), then the analogue of Proposition 2.2 yields for any
Hi that
(24) diam I < n@=T729

Then analogously as for v, (P, q), we deduce

PROPOSITION 4.1: In R%-!, let P be a parallelotope and let q be a positive
definite quadratic form. If the ratio of the circum- and the inradius with respect
to ¢ is at most 2v/d then

vE(P,q) = (1 +0 (nTﬁA’—p))) Epa- (detq)ToT - lelh=ul 1

-2
nd-1
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where ¢, ¢ depends on p and d, and O(-) depends on M, p and d

How does it connect to polytopal approximation? Denote by v(x) the exterior
unit normal at x € M. If P C M is a polytope then

1
(25) 0p(M, P) = (/aM U{/lgtlgx(y(ac),:c —v)P - k(z )dw) "

So let P, C M be a polytope with at most n vertices and minimizing d, (M, P,).
Readily, all the vertices are contained in M. First we describe how to get the
lower bound.

It is easy to show that §,(M, P,) < na@=1. Since the boundary of M is c%,
the analogue of Proposition 2.2 yields that if F' is a facet of such a P then

(26) diam F < n@ @) |

So apply Lemma 1 with m = n@%, and constructing disjoint Lg's. Set
[ A
£ = 1, 20d(d+2p) |
For given (3, define f’g = {I1;,a;} to be the power diagram with respect to gg,
such that {(a;, fg(a] )} is the the family of vertices of P, with distance at most
R from 5.5. Denote by ng the number of the tiles of Tg
Observe that if z € 25 and the vertex v minimizes (v(z),z — v) among the
_22 .
vertices of P, then d(z,v) < n@ D@2, On the other hand, if d(z,v;) <

—2p
nTTD0ET25 for a vertex v; and z = (2, fg(2)) then

(v(z),z —v;) = (1+ O(€)) - gg(z — a;).

Therefore N

5p(M, P) > (1 + O(e) <Z2d Ldet qg - U(Tg))

Now the proof can be finished as in the case of the symmetric difference metric.
Note that ¢, 4 = 1Zp.4.

The upper bound in Theorem 3 can be verified using the similar alterations of
the earlier argument as above.

5. General convex Ci hypersurfaces

We say that X is a convex Ci hypersurface if it is an open, Jordan measurable
subset of a convex body M, the origin lies in the interior of M, and the closure
of X is contained in an open, C% subset of M.
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Similarly, Y is called a convex polytopal hypersurface if it is a Jordan mea-
surable subset of a polytope P and the origin lies in the interior of P. If Y
approximates X then we make the following assumptions: If the approximation
is with respect to the symmetric difference metric (or é,,) then define Y C 0P as
the radial projection of X. Otherwise, for any z € X consider the points y € 9P
where the exterior normals at x to M are also exterior normals at y to P, and
Y is the union of these sets. We say that Y is inscribed if Y € M, and Y is
circumscribed if Y NintM = §. The faces of Y are the intersections of the faces
of P with the interior of Y.

Now we extend the notions of distances to X and Y. Observe that for z € X,
we have

hp(v(2)) = hu(v(z)) = max(v(z),y - z).

SYMMETRIC DIFFERENCE METRIC AND §,,: dg(X,Y) is the volume of the part
of the cone over X which lies between X and Y, and 4,,(X,Y) is the integral of
w on this part.

5 I

L, METRIC, p > 1:  6,(X,Y) = ([ | maxyey (v(z),y — )P k(x) dz)”.

Observe that if X = M (and hence Y = 9P) then §(X,Y) = §(M, P).

In case of the L; metric, we have a closer look at the properties of polarity. If
u # o then define u* to be the hyperplane H = {2: (z,u) = 1}, and set H* = u.
Observe that if v € u* then u € v*.

Let X be a convex C_% hypersurface, which then lies on the boundary of a
convex body M where M contains the origin in its interior. Define X* to be the
set of polar images of the tangent hyperplanes at the points of X. Then X* is
also convex C2 hypersurface lying on the boundary of M* (see [18]). Observe
that X** = X.

Let Y C OP be a convex polytopal surface approximating X with respect to
61. Consider the tangent hyperplanes at the points of Y which are parallel to the
tangent hyperplane at some point of X, and denote by Y* the set of polar images
of them. Then Y* C 0P* is a convex polytopal hypersurface approximating X*
in the sense of §,,.

Now there exists a one to one correspondence between the k-faces of Y whose
closure does nat intersect the boundary of Y and the (d — 1 — k)-faces of Y*.

Set w(x) = [|z]|~(4*Y for £ # o. Then the same argument as above yields that

81(X,Y) = 6,(X*,Y*).

This way the problem of best approximation of X with respect to §; bounding
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the number of k-faces is translated into best approximation of X* with respect
to 6, bounding the number of (d — 1 — k)-faces.

Call a set rectifiable if it is the finite union of images of compact Jordan
measurable subsets of R¢~? by Lipschitz maps. Note that if o is a rectifiable
subset of R4~! then for small ¢ (see H. Federer [5], but rather prove for yourself),

(27) lo +tB¥1 <, t.

Therefore, if the boundary of X is rectifiable then it causes a smaller error than
the error we accumulate otherwise. In particular, the method above for closed
convex hypersurfaces yields

COROLLARY 2: Let X be C2 such that the second fundamental form Q, is a
Lipschitz function of x and the boundary of X is rectifiable. Assume that Y,
is a best approximating surface with respect to the metric § having at most n
vertices.

(i) If § = 65 then

d+1

- 1

2
nd-1

T

3s(X,Y,) = (1+o (n;f)) : %meld_l. (/X n(z)ﬁsz)

The analogous formula holds if Y, is assumed to be inscribed or circum-
scribed, or the number of facets is bounded.
(ii) If 6 = &1 then

%L}
51(X,Yn)=(1+O(n's%17))-%ldivd_1-(/ n(m)ﬁxdm) R
X

The analogous formula holds if Y,, is assumed to be inscribed or circum-
scribed, or the number of facets is bounded.
(iii) If p > 1, 6 = 6, and Y, is inscribed then

)—Hz;tf .

8,(X, Yy) = (1 +0 (naocfm )) Cpa < / w(z)E% dg
X n@-1

Finally, let us formulate the geometric version of Proposition 2.3. This state-

ment can be useful when piecing patches in later applications. The proof is again

based on Proposition 2.3, and on subdividing X into almost paraboloid patches.

PROPOSITION 5.1: Assume that 3M is Cﬁ, and X is an open, Jordan measurable
subset of OM. Then there exists a A > 0 such that if Y1,...,Y:, are polytopal
hypersurfaces approximating ¥ and the facets of the Y;’s have diameter at most
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A then the polytopal hypersurface Y determined by the vertices of Y1,...,Y,
satisfies
0s(2,Y) < 6s(Y1) + -+ + 65(Yam)-
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