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A B S T R A C T  

Let M be a convex body in R d with C 3 boundary. Polytopal approxi- 
mation of M with respect to the syminetric difference metric (or the Lp 
metric) is considered, if the approximating polytope has at most n facets 
(or at most n vertices). The asymptotic behavior of the distance of the 

--2 
best approximating polytope is well-known; it is of order n ~-i  . This 

--2 - - ]  
paper provides an estimate of order n ~ + ~  for the error term. 

1. I n t r o d u c t i o n  

Assume tha t  M is a convex body  with C 2 boundary,  namely, the bounda ry  is C 2 

and the Gaufi -Kronecker  curvature  is positive everywhere. Let 5 be either the 

symmetr ic  difference metric or the Lp metric (see below for definition). Consider 

the po ly tope  Pn (or P(n)) with at most  n vertices (at most  n facets) minimizing 

5(M, P~) (or 5(M, P(n))). Since the middle of the century, much effort and m a n y  

brilliant ideas have been put  into obtaining asymptot ic  formulae for 5(M, P~) 

and 5(M, P(n)) as n tends to infinity. The  investigations were s tar ted by L~szl6 

Fejes T h t h  (in dimensions 2 and 3, cf. [6]), and continued by McClure and Vitale 

in the plane, cf. [17]. The  higher dimensional analogues needed new ideas. It  was 

P. M. Gruber  who first obtained asymptot ic  formulae (after the b reak through  

* Supported by OTKA, Hungary. 
University College London. 
Received February 14, 1999 

The paper was written during a visit at 



2 K.  B O R C ) C Z K Y  Isr .  J.  M a t h .  

by R. Schneider for the Hausdorff metric, which is easier to handle). By now, 

a whole theory has been developed by P. M. Gruber, R. Schneider, S. Glasauer 

and M. Ludwig (see the comprehensive surveys [11] and [12] for the history and 

for the state of art of this field). 

The central problem of this paper is to estimate the error of the asymptotic 

formulae as n tends to infnity. 

Note that  the support function of a convex body K is defined as hE(U) ---- 
ma~XxEK(X,U ). Let M and P be convex bodies. 

SYMMETRIC DIFFERENCE METRIC: 5 s ( i ,  P) is the volume of the symmetric 

difference of M and P. 
1 

ip  METRIC, p _> 1: 5p(M,P) = (fs,-I [hM(U)- hp(u)lP du) -~ 

If P C M then 51(M, P) is actually proportional to the deviation of the mean 

width, while minimizing 5s(M, P) is equivalent to maximizing V(P). On the 

other hand, the L2 metric is a useful tool for stability of geometric inequalities 

(see H. Groemer [8]). 
Assume that the boundary COM of the convex body M is C 2 (for definition 

and related notions, see R. Schneider [18], or the beginning of Section 3). Denote 

the second fundamental form at x C OM by Qx, and hence the GauB-Kronecker 

curvature is t~(x) = det Q~. Naturally, both Qz and n(x) are continuous functions 
of x C cOM. The convexity of M yields that Qx (t~(x)) is positive semidefinite 

(non-negative). 
We say that  cOM is C~_ if Qx is positive definite at each x C aM; or equivalently, 

n(x) is positive at each x E OM. The basic reference about the properties of 

smooth convex bodies is R. Schneider [18]. 
The paper deals with a convex body M such that Qx is a Lipschitz function 

of x E aM.  Observe that this property is guaranteed if OM is C~. 

First we consider the symmetric difference metric. If Pn (P(n)) is the polytope 

with at most n vertices (facets) minimizing 5s(M, P,~) (Ss(M, P(n))) then (see 

M. Ludwig [15]) 

(1) 5s(M, Pn) " 1 " ( fo  a(x)~V~+~dx) ~-'~ 1 ldeld_ 1 - - 2  , 
M n d-1  

(2) 5s(M,P(,o) ,,~ ~ld iva- l "  tc(x)~+ldx 2 .  
M n 71:Y 

Here ldeld-1 and ldivd-1 are constants defined in R d- l ,  and independent of 

M and n. The expression fOMg(X)Z~i+ldx is the so-called affine surface area 
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of M, and it is invariant under volume preserving affine transformations (see 

W. Blaschke [2], E. Lutwak [16] or K. Leichtweit] [13]). 
Formulae analogous to (1) and (2) were proved earlier assuming that Pn is 

inscribed (cf. P. M. Gruber [9]), or that P(n) is circumscribed (cf. P. M. Gruber 

[10]). Here we also consider the cases if P~ is circumscribed, or P(~) is inscribed. 

Our aim is to estimate the order of the error term. By O(.) we mean the 

Landau symbol where the implied constant depends on M. 

THEOREM 1: Assume that OM is C 2 and the second fundamental form Qx is 

a Lipschitz function of x. If Pn (P(,~)) is the polytope with at most n vertices 

(facets) minimizing 5s(M, Pn) (hE(M, P(~))) then 

d+l  

5s(M, Pn) = 1 + 0  n ~  .~ lde ld-1 .  dx " 2 , 
M n d - 1  

d+l  

5s(M,P(,~)) = 1 + O  n~TZ .~ ld ivd_ l .  a(x )X~dx  ~=x __2 • 
M n d - 1  

One may impose the additional condition that the polytope is inscribed or 

circumscribed. 

In the planar case, M. Ludwig managed to verify the formula 

1 1 (~5 )  5s(M, Pn) = a 2 ( i )  " -~ + ha (Z)"  ~ + O 

where a2(M) is given above, and a4(M) is a certain affine invariant function of 
M (see [14]). This points to the conjecture of P. M. Gruber (see [12]) that if 

OM is sufficiently smooth in ]I~ d then there exists a series expansion of 5s(M, Pn) 

(and probably also for the other metrics used in polytopal approximation). 
Next we turn to the L1 metric. It turns out that the problem is closely related 

to approximation by 5s, as an argument of S. Glasauer shows (see S. Glasauer 
and P. M. Gruber [7], or Section 4). 

THEOREM 2: Assume that OM is C 2 and the second fundamental form Q~ is 

a Lipschitz function of x. If Pn (P(n)) is the polytope with at most n vertices 

(facets) minimizing (~1 (M, Pn ) (51 ( M, P(n) ) ) then 

d ÷ l  

( ( - , ) )  1 ( ~  ) 1 
5~(U, Pn) = 1 + O  n ~  - ~  . ~ l d i v d _ l .  a(x)d_~d x z:~ 2 , 

M n d - 1  

~I(M,P(n)) = ( (' " ~ ' ~ l + O \ n ~ / / ' ~ l d e l d - l "  2 - 
M n '~-1 



4 K. BOR(~CZKY Isr. J. Math. 

One may impose the additional condition that the polytope is inscribed or 

circumscribed. 

Observe that  the role of Idiv and Idel has been interchanged. This not an 

accident, since the correspondence between 61 and 5s is via polarity (see Sec- 

tion 4). In particular, the constants in the asymptotic formulae for 6s and for 61 

correspond to each other; namely, the role of vertices and facets, and the words 

inscribed and circumscribed should be interchanged in the statements. 

If Q~ is assumed to be only continuous then the corresponding asymptotic 

formulae were proved in S. Glasauer and P. M. Gruber [7] and M. Ludwig [15]. 

Finally, we consider the Lp metric, p > i, only if the polytope is inscribed, and 

the number of vertices is bounded. Let OM be C~_, and for p > 1, assume that  

Pn C M is the polytope with n vertices minimizing 5p(M, Pn). Then we prove 

(following the method of S. Glasauer and P. M. Gruber [7]) that  

(3) 5p(M, Pn) "~ -~ divd-1 • ~(x) d-1+2p dx)  1 
M n ~-1"  

We strengthen this formula if the second fundamental form is Lipschitz: 

THEOREM 3: Assume that OM is C 2 and the second fundamental form Q,  is a 

Lipschitz [unction of x. I f  p > 1 and P,~ C M is the polytope with at most n 

vertices minimizing 5p( M, Pn) then 

d-- l-[-2p 

5p(M, P n ) =  1 + O  n ~  "Cp ,  d " a(x)"-~+2"dx " 2__" 
M n d-~ 

Observe that  the error term gets better if p increases. In particular, if say 

p _ d then the exponent in the error term is of order l id .  This was proved in 

the case of Hausdorff metric (p = oo) in K. Bhr5czky, Jr. [4]. 

In order to get any error term, it seems to be essential that the fundamental 

form is Lipschitz and positive definite. On the other hand, the asymptotic for- 

mulae can be proved even allowing the curvature to be zero (see K. Bhr5czky, Jr. 

[3]). 
The paper is organized as follows: First we prove Theorem 1 in Sections 2 

and 3. The two theorems about the Lp metrics are verified in Section 4, relying 

heavily on Theorem 1 and its proof. 
We close the paper showing that the analogous formulae hold for general convex 

hypersurfaces (see Corollary 2) with the appropriate definition of distances and 

approximating polytopal hypersurfaces. 
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Some words about notation: We write f << g or f = O(g) if there exists a 

constant c > 0 depending on M such that Jf] < c . g .  If f << g and f >> g then 

write f ~ g. Note the constants in Sections 2.1, 2.2 and 2.3 depend only on d. 

In I~ d, we fix a scalar product (.,-, ), and denote by I1" I[ the corresponding 

norm. The induced quadratic form defined in ]~d-1 is denoted by q0- When 

speaking about inradius, etc. of bodies in ~d-1,  we mean the metric determined 

by q0. 

On the other hand, we frequently use some other positive definite quadratic 

form q. If we use the metric defined by q then we say that inradius, it etc. is 

defined with respect to q. 

2. S y m m e t r i c  d i f f e r ence  metric:  p o w e r  d i a g r a m s  

Let M be a convex body with C 2 boundary. 

We present the proof only for the case if the number of vertices is given. The 

arguments can be easily transferred to the case if the number of facets is bounded, 

and the necessary changes are explained at the end of the section. 

Note that  when piecing patches, we take the convex hull of the patches if the 

number of vertices is bounded, and intersection of convex shapes corresponding 

to the patches if the number of facets is bounded. If M is a convex body and P 

and Q are polytopes then 

5s(M, P N Q) < / i s ( M  , P) + (is(M, Q). 

On the other hand, it is much harder to control ds(M, eonv(P,Q)) in terms 

of 5s(M, P) and 5s(M, Q). Therefore the case where the number of vertices is 

bounded is more complicated. The only exception is if the polytopes are supposed 

to be inscribed. Then one does not have to worry about piecing patches, since 

the larger the polytope the smaller the distance. 

The asymptotic formula (1) encodes two statements: First, that  for any ~ > 0 

and large n, the best approximating polytope P,~ satisfies 

d+l 
1 (~o 1 ) u-1 1 (fs(M,P~) > (1 - z ) . ~  Ideld_l • n(x)J-~dx 2__. 

M n u-1 

This estimate we call lower bound. On the other hand, for any large n we 

construct a polytope Q= with at most n vertices such that 

d+l 
1 ( ~  ) 1  s(M, Q , )  < (1 + c ) .  ldeld_  • . 

M n ~ 
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This estimate we call upper bound. 

In case of Theorem 1, e will be of the form O n~-g ~ . 

The proof of (1) and Theorem 1 breaks down into two main steps: First we 

consider polytopal approximation of paraboloids, which in turn leads to power 

diagrams in 1R a-1. Then subdivide O M  into almost paraboloid patches, transfer 

the results about paraboloids to these patches, and piece the estimates for the 

patches into a global estimate. 

2.1 POWER DIAGRAMS. 

Let q be a positive definite quadratic form. Power diagrams are discussed say 

in [1] from an algorithmic prospective. The term Laguerre tiling is also used (this 

is the explanation for the 'T' in ldel and ldiv). Actually, "del" stands in honour 

of Delone, and "div" stands in honour Dirichlet, in conjunction with the tilings 

named after them. 

For us, a p o w e r  d i a g r a m  T = { I I i , a i , r i }  with respect to q is a finite family 

o f  convex, compact ( d -  1)-polytopes {Hi}, centers {ai} and real numbers {ri} 

such that  the interiors of the IIi's are disjoint, and q ( z  - a i )  - ri  < q ( z  - a j )  - r j  

holds if z E Hi. Here the IIi's are the facets of T, and in general, the union of 

the k-faces is the set of k-faces of T. We say that  T covers a set C if the union 

of the facets in T covers C. 

Call T circumscribed if r i  < O, and inscribed if q ( z  - a i )  < r i  holds for z E IIi. 

Denote by T + the union of all Hi and the ellipsoids q ( z  - a i )  < r i ,  and define 

a i  = {z E T+: q ( z -  a i )  - ri  <_ q ( z -  a j )  - r j  for each j } .  

The following observation connects power diagrams to polytopal approxima- 

tion: Let Y be the union of a subfamily {Fi} of facets of a polytope P in ~d so 

that  the exterior normals point downwards (we assume that ]R d-1 is embedded 

into ]Rd). Define ai so that the tangent hyperplane at (ai ,  q ( a i ) )  to the graph 

of q is parallel to af fFi .  Then there exists some ri  so that a f fF i  is the graph of 

q(a i )  + la, ( z  - a i )  + r i  v~here la, is the derivative of q at ai. Denote by Hi the 

orthogonal projection of Fi into R d- l ,  and assume that  Y is the graph of the 

piecewise linear function qoi. Since q( z ) = q( ai ) + l ~  ( z - ai  ) + q(  z - ai  ) , we deduce 

that  

f ( z )  - ~ ( z )  = q ( z  - a i )  - r i .  

In particular, T = { I I i , a i , r i }  is a power diagram with respect to q. For 

example, the ellipsoids q ( z  - a i )  <_ r i  are the projections of the caps cut off by 

a f fF i  from the graph of q. 
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This process can be reversed, and we denote by TT the piecewise linear function 

on T + associated to T. 

Observe that  T is circumscribed (inscribed) if and only if Y is below (above) 

the graph of q. 

Finally, define 

v(T) = ~ /_ Iq(z - ai) - ril dz, 
J~t 

I i 

and for any convex body C in R d-1 set 

v~(C,q) = inf {v(T): the number of vertices in C is at most n},  
TcoversJ  

v(~)(C,q) = inf {v(T): the number of tiles is at most n}.  
TcoversJ  

For A :> 0, denote by AT the power diagram {MIi, Aai, A2ri} with respect to 

the same quadratic form q. Observe that  

v(AT) --- A d+ l '  v(T). 

Denote the unit ball in R d-1 by B, and the ( d -  1)-dimensional Lebesgue 

measure by T" t- 
For a convex body C in R ~-1, let Q(C) be the inradius of C. Now if t < Q(C) 

then 
Ici (4) IOC+tBI << t 

The next est imate is contained implicitly in M. Ludwig [15], but we prefer to 

give a quick proof for the sake of completeness. 

PROPOSITION 2.1: Let q be a positive definite quadratic form, and denote by 
the inradius of C with respect to q. If n .  ~d--1 ). IV l then 

v~(C,q) ~ (detq) z~-~ • ICI ~+-11 • 1 
r id-1  

Proof: We may assume that  q -- q0. Then the upper bound follows easily 

by taking say power diagrams constructed with the help of a square grid. The 

condition on n ensures that  the boundary does not cause problems (see (4)). 

Turning to the lower bound, let the power diagram T = {IIi ,ai ,ri}  cover C 

with having at most n vertices in C. We may assume that  each tile is a simplex. 

For each vertex u, define St(u) as the union of the tiles o f t  containing u. Observe 

that  St(u) is s tarshaped with respect to u, namely, conv{u,y} is a subset of S 

for any y C S. In addition, the intersection of any ray starting from u and St(u) 

is contained in one of the tiles. 
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For the time being, assume that u is the origin. If z E Hi then set a(z) = ai 

and r(z) = ri so that,  along any open ray starting from u, a(z) and r(z) are 

constants. Denote by R(v),  v C R a-2, the radial function of St(u).  
Note that 

min f l 1 .  min f l a'rER JO ](t - a)2 - rl ta-2 dt > - I ( t  - a )2  - r] dt >> 1. 
e a,reR J1--~ 

Therefore using polar coordinates and Hhlder's inequality yields that 

d-I-1 

~t(~)  I ( z - a ( z ) ) 2 - r ( z ) }  dz >> ~ e - 2  R(u)d+ldu>> ( £ d - 2 R ( u ) d - l d u )  z=z 

d+l 
The last expression is .~ ]St(u)lZ=x. Since each tile is a simplex, we deduce that 

d . v ( T )  >> E ISt(u)l ~+-I. 
uEC vertex 

On the other hand, we have at most n starshaped set St(u) and 

ISt( )l > ICI. 
uEC vertex 

Therefore Jensen's inequality yields the proposition. | 

2.2 SOME AUXILIARY STATEMENTS. 

First we show that  a hypersurface well approximating OM lies really close to 

OM: 

PROPOSITION 2.2: Assume that on an open subset of ]R a- l ,  q is a positive 

definite quadratic form and f is a C 2 function such that the quadratic form 

qz representing the second derivative of f at z satisfies q < !qz < 2q for any z. 
- -  2 - -  

I f  ~ is a convex function and If(a) - ~o(a)] >_ R for some R > 0 then 

fq I f(z)  - qo(z)l dz >> (det q ) - ]  d+, • R - - r - .  

(z-a)<R 

Proo~ We may assume that q -- q0. Subtracting the equation of the tangent 

hyperplane at (a, f (a ) )  yields that we may also assume that  the derivative of f is 

zero at a. Using polar coordinates around a in ]R d-1 reduces the problem to the 

following one: If f and ~o are convex, increasing functions on [0, x/~] such that  

1 f t !  t f (0)  --- 0, I~(0)1 >_ R and 1 _< 7 ( ) _< 2 then 

f V/~ d+l If(t) - ~o(t)lt a-2 dt >> R -~-. 
J0 
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(6) 

holds. 

Here we m a y  assume tha t  ~(0) = - R .  If ~ minimizes the integral above, then  

for some 0 < to < t l ,  ~ is linear on [0, tl], f ( t i )  = ~(t i ) ,  and 

/0 f l  1 tot d - l d t  = t d - ld t .  

Now tl  >> v /R  yields tha t  to = 2 -1/d . tl >> v ~ .  We deduce tha t  ~(t)  _< 0 if 

t <_ cx /R holds for some c depending on d, which in turn  yields the Proposi t ion.  
| 

For piecing lower bounds,  we use the following consequence of Hhlder ' s  

inequality:  Assume  tha t  #i, n~, i = 1 , . . . ,  k, are posit ive numbers .  Then  
d4-1 

d+l 1 e-1 1 
( s )  . J - l  2 _> 2 • 

n i 

On the o ther  hand,  when piecing poly topal  patches,  we need the following 

s t a t e m e n t  (see the  remarks  abou t  piecing at  the beginning of Section 2): 

PROPOSITION 2.3: Let {~Pi} and ~p form a finite family of convex functions in 

R d-1 such that the domain 5i (a) o f~i  (of~)  is a simplicial complex and ~i (~) 

is linear on each simplex. Assume that there exist subcompliees ai of 5i such 

that the ai's cover a, the graph of ~ is the lower convex envelope of the graphs 

of the ~ lai , and if  the simplex 11 of a intersects ai then II is covered by 5~. 

Now let q be a positive definite quadratic form. Assume that f is a C 2 function 

on the union of the ai's such that the quadratic form qz representing the second 

derivative of f at z satisfies q < 1 _ ~qz _< 2q for any  z. Then 

int~lf(z)-~(z)ldz << ~ 
Proof." I t  is sufficient to prove tha t  for any simplex I I  in a,  the inequali ty 

/ n ' f ( z ) - ~ ( z ) ' d z ~ <  , ~ .  ~n,~'f(z)-~i(z)'dz 
Let H be a s implex of a.  Define v ~ H by 

(7) If(v) - :~(v)l  -- m a x { I f ( z  ) - ~(z)l  } . 
zEIl 

Firs t  a s sume  tha t  f ( v )  < ~(v) ,  and  let H* be the set  of z e I I  such t ha t  

f ( z )  < 99(z). Then  (7) yields t ha t  

'f(z)- (z)ldz << f(z)dz, 
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and hence (6) follows as ~ _~ ~i for each i. 

Next assume tha t  f (v )  > ~(v). Then v is a vertex of YI, and there exists a ~i 

such tha t  ~(v) = ~i(v). We prove that  

):(z)-   (z)i << 

Adding a linear function to each function, and using polar coordianates,  the 

problem can be t ranslated in the following one dimensional one: Assume tha t  

1 < fit(t) ~ 2 on [a, b], ~ is a constant  and ~i is an increasing convex function. 

If  ~ ( a )  = ~ < f (a) ,  and 

then 

~ If(t) - :(t)[ = f(a) - ~o(a), 

b 

~ lf(t)  - ~1 td-2dt << If(t) -- : ' ( t ) l  td-2dt" 

We may  assume tha t  f ( t )  > ~p for t E [a,b]. Set c -- maxt~[a,b]{~i(t) <_ f ( t )} .  

If c < (a + b)/2 then 

If(t) - ~l td-2dt << If(t) - ~oi(t)i te-2dt,  

and if c >__ (a + b)/2 then 

If(t) - ~] td-2dt << If(t) -- ~i(t)l ta-2dt. 

W i t h  this, the proof  of the proposit ion is complete. | 

2.3 COVERING A PARALLELOTOPE. 

Let W be the unit  cube W -- [ 1 ,  ½]d-1 in ]R d-1. Assume that  T is a power 

d iagram covering W such tha t  v(T) < 2.vn(W, qo). We deduce by Proposi t ion 2.1 

and Proposi t ion  2.2 tha t  there exists a positive a depending on d such tha t  for 

any z E T +, we have 
--4 

(9) I q o ( z )  - < 

On the other  hand, there exists a ~ / >  0 depending on a such tha t  if (9) holds 

then,  for any f~i associated to a tile II~ of T, we have 
--2 

(10) d iam gti < "y- n ~ : i ~  . 

First  we consider a general approximation.  The  error term in our formulae is 

usually of the  form O ( n - ~ )  for certain a .  We do not  make an a t t empt  to find 

the opt imal  a.  
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PROPOSITION 2.4: 

-1  1 
vn(W, qo)=- (1 -t- O (n3d~z)) • ldeld_l . n d ~  

for the suitable ldeld_l depending only on d. 

Proof: Denote by Tn a power diagram covering W, having at most n vertices in 

W and satisfying v(Tn) = v~(W, qo). Define c n -~- vn(W , qo)" na -~ .  

First we claim that  if m > logk and md-lk  < N < (m + 1)d- lk  then 

(11) 

Here the condition m > log k ensures that  m tends to infinity with k. 

Set 
--2 

C ---- ] g ( d - - 1 ) ( d + l ) ,  

and denote by Tk = {Hi,ai ,  ri}i=a ..... t the power diagram, which consists of the 

tiles of (1+2~/-c)T~ intersecting W. Then v(Tk) < (l+O(c))vk(W, qo), Tk covers 

W and the number of all the vertices of Tk is at most k (independent of whether 

they are in W). 

Denote T + \ ( 1  - 4-f. c )W by T~-, which is contained in (1 + 4")'-~)W if k is 

large. In addition, the minimality of v(Tk) yields that  

(12) 
t 

Let Yl . . ,ym d be the vectors such that  Yl + ± V¢: 1 ' "  m , . . . , ymd  + ~ W tiles W. 

For j = 1 , . . . ,  m d, denote by ~j the piecewise linear function associated to the 
1 power diagram yj + -~Tk. Consider the convex hull of the union of the vertices of 

the graph of each ~j. Now there exists a power diagram TN such that  the graph 

of (flTN over the tiles of TN is the lower envelope of the convex hull. 

Readily TN covers W, and it has at most mdk < N vertices. For any z E TN +, 

we have 
--4 

• ( d - - 1 ) ( d + l )  I q o ( z )  -   N(z)l < (mdk) 

because this property holds for each ~j. Therefore (10) yields that  if a vertex of 
1 a tile H is coming from yj + -~Tk then 17 is covered by the tiles of 

1 
yj + - .  (1 + 

m 
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In particular, Proposition 2.3 can be applied, and (12) yields that 

V(TN) < (1 + 0 (e)). ck" (mdk) f=~-2~ • 

In turn, we conclude (11). 

We deduce by Proposition 2.1 that the sequence {c~} is bounded from below 

and above by positive numbers. Thus (11) yields that ldeld_l = limn-,oo c~ exists 

and positive. In addition, 

(13) 
Next we prove that for large k, there exists k0 with 

(14) k 1 - ~  < k0 < k 1+~ 

such that  

holds for N = k l+zl-r-~ , and k0 tends to infinity with k. 
1 

Set m = k (d--:~ , which satisfies N = md-lk.  Consider the tiling {yj + -~W} 
of W by the m d - 1  translates of ± W  Observe that if H is a facet of TN then 

rP, 

-2  1 
d i a m H < ~ , . N ~  = ~' " - -  d - 1  

m d+~ m 

Denote by Nj the number of facets of TN intersecting 

m d+l 

where no facet of TN meets two of the Wj's. 
1 1 1 1 Call an Nj all right if k - ~  < Nj <_ k + ~ .  We claim that there exists an all 

right Nj satisfying cNj > 1 + k ~  "~ CN. 
Suppose to the contrary that such an Nj does not exist. Observe that  the 

number of large NSs with Nj > k l + ~  is readily at most m a - l k ~  }. On the 

other hand, Proposition 2.1 applied to W and the Wj's yields that the number of 

N3's with Nj < k - ~  is also O m a - l k ~  . In particular, the volume covered 
- -1  

by the Wj's corresponding to all right Nj's is 1 - O ( k ~ ) .  
Now (5) and the indirect hypothesis yield for large k that 

4 
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This is absurd, therefore the all right Nj with CNj <_ 1 + k ~  CN can be chosen 

as the ko in (15). 

Finally, we claim that  for large n, there exists N(n) > n l + ~  satisfying 

(16) CN(n) ~ (1--0  (n~-~-ff~ ) ) c n. 

1---1 In order to prove the claim, apply (15) with k = n 2e. We deduce that  there 

exists N(n) > nl+~ such that 

On the other hand, (11) yields that 

because k0 satisfies (14). In turn, we deduce the claim. 

Now for any large n, construct a series {nl} with no = n and nl+l -- N(nl). 

( Applying (16) to this series shows that ldeld-1 > 1 - O(na~d Cn, and hence 

the proof of the proposition is finally complete. | 

Now let P be a parallelotope such that the ratio of the circum- and the inradius 

is at most 2v~.  Then the same argument can be repeated about vn(P, q0), using 
1 the family {Yi + mP}. In particular, we deduce 

PROPOSITION 2.5: In ~d-1, let P be a parallelotope and let q be a positive 

definite quadratic form. If the ratio of the circum- and the inradius with respect 
to q is at most 2x/~ then 

vn(P,q) = (1 + O (n3- -~) ) . lde ld_ l .  (detq) ~J~-l. IPI dd-~-~ - 1 
rid--1 

Remark: The proof shows that  the same estimate holds even assuming that  the 

total number of vertices of the power diagram is at most n in Proposition 2.5, 

and each tile intersects P.  

If the power diagram is supposed to be inscribed (circumscribed) then the 

analogue of Proposition 2.5 still holds, with the appropriate constant einscribe d 

(Ccir¢,mscrlbed). Note that  Cinscribe d was baptized as deld-1 in P. M. Gruber [9]. 
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3. S y m m e t r i c  d i f f e rence  m e t r i c :  a p p r o x i m a t i n g  t h e  b o u n d a r y  

3 . 1  SUBDIVIDING THE BOUNDARY. 

We describe the properties of the convex body M with C 2 boundary we need 

in the sequel: Identify the tangent hyperplane at x C OM with ~ d - l .  Then an 

open neighborhood U of x in OM is the graph of a convex C 2 function f defined 

in the projection V of U into ~d-1.  

Denote by lz the derivative of f at z and by qz the quadratic form representing 

the second derivative of f .  Here Qx = qx, qz is positive definite since OM is C~_, 

and actually qz is a Lipschitz function of z if and only if the second fundamental  

form is Lipschitz on OM. Fix some y C V. We deduce using the Taylor expansion 

of f that  
1 

f ( z )  = f (y )  + lu(z - y) ÷ ~q+,(z - y) 

where w = y + t(z  - y) for some 0 < t < 1. In particular, the Gaufi Kronecker 

curvature at w = (z, f ( z ) )  can be expressed as 

~(w) = det qz 
2 d_4k& • (1 + Ill ll ) + 

LEMMA 1: Assume that OM is C~_, Q~ is a Lipschitz function of x on OM, and 

consider the positive Lipschitz functions ¢ (p) in a neighborhood of OM in ~d 

(o. aM). 
Then for large m, there exist pairs of open Jordan measurable subsets ~,,~ C 

~,~ of OM and hyperplanes H~, quadratic forms q~ and constants ~ with the 

following properties: # ( ~ } ..~ m; 
(i) either the distance between any two ~ 's is >> m ~-~-2~ and 

11 

--2 
or any a C OM wit5 d i a m a  << m z=T is contained in some {E~} and 

In addition, call a E 0 boring if  there exists an x E ~0 with distance at least 

>> m ~:~-~ from 0 ~ ,  and x is contained also in another ~ .  Then 

~ O(x)dx<< 1_1 " fo  O(x)dx; 
]E 0 bor ing  0 m a-1 M 
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(ii) 

(iii) 
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~ (E~) is the graph of a C ~ function f~ on some ~ C H~ ( ~  C H~); 

• ~ is a parallelotope, I~1 ~ 1/m, the ratio of the circum- and inradius of 

• ~ is at most 2v~,  and i f x  is in the boundary o f ~  then the distance of 
- -2  

x and ~ is ~ m~=T, 

(iv) i f  lz is the derivative of f~ at z then Illz [I = 0 ( ~ )  

(v) for the quadratic form q~ representing the second derivative of ffl at z, we 

have 
1 ( 1 +  qfl <_ ~qz < _ O(mf=~-~)) "q~; 

(vi) if  z is in a neighborhood of ~ in R d then 

Proof: We use in the proof that there exists some ~ > 0 depending on M such 

that for any x C a M  and any tangent vector u at x, we have 

w Ilull < Qx(u) < ~-1  Ilull. 

Denote by z~(x) the exterior unit normal at x E OM. There exist a finite family 

{Gi} of hyperplanes avoiding M and an open convex set Zi with full dimension 

in each Gi such that  the following holds: Denote by Xi the points of a M  on the 

side of Gi whose orthogonal projection into Gi lands in Xi, and let xi E Xi be 
the point such that  u(xi) is normal to Gi. Then {Xi} cover 0M. In addition, 

](~(x), p(xi))l > 0.99 and 0.99Q~ _< Q¢ < 1.01Qx~ hold if x E Xi. 
Now for large m, consider grids in each Gi such that the grid in Gi has a 

fundamental parallelotope Wi which is a ( d -  1)-cube with respect to Q~ and 
1 IW~l = ~ ~ Izd. 

Fix i. Assume that  {zfl},/3 E Bi is the family of the points of the grid in Gi 

grid in Zi. 

For some/3 E Bi, define x~ E Xi  to be the point which projects onto zB, and 

let HB be the tangent hyperplane at x B. Denote by FO the family of points in 

H~ whose projection into Gi lies in zB + ± Wi. 
m 

If/3 C /3i and the projection of Xi into Hfl intersects FO then IF~l ~ -~, F~ 

is a parallelotope, and the ratio of the circum- and the inradius of Ffl is at most 

1.5v~. In particular, the inradius of F~ is ) )  m 3~-~ . 

The proof is presented only for the case if {~,/~} covers OM (the proof for the 

other case is analogous). Then ~fl (~B) is defined by scaling Ffl by a factor 

(A), where 
1 2 

A = I +  ~ and A = I + .  ~ .  
md-~ md-~ 
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Then all the conditions (i),. . .  ,(vii) are satisfied if we replace cOM by Xi. The 

existence of qz, etc. follows by the fact that  Q~, etc. is Lipschitz. 

Finally, construct the subfamily of {E~} satisfying the properties (i), . . .  ,(vi) 

by induction on i: First, take all the patches associated to X1. Out of the patches 

associated to Xi+l ,  take EZ if z~ + ± V¢:~+1 is not contained in the projection of m 

(X1 U • • • U Xi) V) Xi+l into Gi+l .  The convexity of Zi yields that  

I(cOX~ + t .  Bd) ncOM I << t 

holds for each i, and hence the patches we have constructed satisfy all conditions. 

I 

R e m a r k :  Assume that  the only condition we have is that  cOM is continuous, and 
--1 

let E > 0. Then the same proof gives the statement above, only m z=~ should be 

replaced by E in (i), . . .  ,(vi). 

3.2 P O L Y T O P E S  A N D  P O W E R  D I A G R A M S .  

So let Qx be a Lipschitz function of x E cOM. For both the upper bound and 

the lower bound, apply Lemma 1 with m = n ~-~+2 and y(x) = t~(x) ~r+~ (no need 

for ¢). In order to simplify notation, set 

1 

ns~-~ 

Observe that  if x E ~ and x = (z,  f ~ ( z ) )  then the Gau$-Kronecker curvature 

at x is 
det qz = (1 + O(E)) • 2 d-1 det q~. 

(17) ~(x) = (1 + Ilgzll2)~ 
If F is a facet at  ZZ, consider the point (a, f ~ ( a ) )  for a E H~ where the tangent 

plane is parallel to aft F.  Thus affF is parameterized as 

¢flB(z) = f~ (a )  + la(z  - a) + r 

for some r E R. Since f ~ ( z )  = f~ (a )  + la(z  - a) + ga(z  - a) by Taylor 's  formula 

where ga(Z - a) = 1 ~ q ~ ( z  - a) for some w between a and z, we have 

(18) f ~ ( z ) - ~ ( z ) = g ~ ( z - a ) - r  and q ~ < g ~ < ( l + O ( e ) ) . q / ~ .  

Therefore we can transfer the estimates about power diagrams to the patches 

E~, and the reverse. In this section, we associate power diagrams to a well 

approximating polytope, and reverse. The corresponding calculations are left for 

the next section. 
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We start with the lower bound, and hence the closures of E~'s are pairwise 

disjoint. For large n, let Pn be the polytope with at most n vertices minimizing 

5 s ( M , P ~ ) .  

It is easy to construct examples of polytopes showing that 5s(M, P,~) << n z~-~ . 
Since the boundary of M is C 2, we may assume by Proposition 2.2 that if F is 
a facet of P~ then 

- -2  

(19) diamF, diam (affF A OM) <~ n(~-1)(~+1~. 

Fix some ft. Let ~Z be the piecewise linear function on ~t~ such that  the part of 

OPn above ~Z is the graph of ~ .  Consider the family {(uj, ~ ( u j ) ) )  of vertices 

of the graph of ~Z. There exists a power diagram TZ = {Hi, ai, ri} with respect 

to q~ such that  { u j }  form the set of vertices of :F~; namely, if uj C II~ then 

- = - - 

Now the associated power diagram T~ with respect to qz is defined so that  the 

tiles of TZ are the II~'s which intersect ~ The corresponding part YZ of OPn is 

the graph of ~ above these tiles. Denote the number vertices of TZ in ¢~ by n~. 
- -2  - -2  

Note that m ~-=~ -- n(~-l)(d+2). We deduce by (19) and Lemma 1 that T~- c ~Z 

for large n, and the distance of T~- and 0~PZ is :>> n(~+~ ~-1 . 

In order to prove the upper bound we reverse the process: Define n~ so that 

~ n z = n and n~ is proportional to (det qz)½ I~Zl up to 1 + O(~). In particular, 

nz ~ n~+~. Now I~Zl = (I+O(~)).I~Zl holds by Lemma 1, and hence Proposition 

2.5 yields a power diagram TZ = {II~,a~,r~} covering ~ such that number of 
vertices in ~ is at most n~ and 

v(T~) < (1 + O(~)). ldeld_~. (detq~) z~z-~ - I~1  ~-+~ • 1 

Define ~Z as the piecewise linear function on ~ such that the vertices of the 

graph of ~Z are formed by the family {(v, fz(v))} where v is some vertex of TZ, 
and if u is a vertex of H~ then 

f z ( u )  - ~Z(u) = q~(u - ai) - ri. 

Define TZ to be the power diagram of the tiles Hi which intersect ~ and YZ is 

the graph of ~Z above these tiles. 

Since the analogue of (19) is satisfied by the facets of T~, Lemma 1 yields that  

T~- C ~P~, and the distance of T~- and 0~p~ is >> n ~ .  

Finally, define Qn as the convex hull of the Y~'s. 
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3.3 PIECING THE ESTIMATES. 

First we prove a technical, but  extremely useful statement.  

PROPOSITION 3.1: For any a E R d- l ,  let ga be a continuous, non-negative 
function. Consider a l , . . . , a m  E •d-1, r l . . . , r m  E ]R and Jordan  measur-  

able sets i l l , . . .  ,f~m such that ~ 1 , . . .  , ~m  cover the sets ga~(Z - ai) < ri and 

( z  - - = m i n i  g . j  ( z  - a t )  - f o r  z e 

Assume that q is a positive definite quadratic form, and q ( z -  a) <_ g~(z - a )  <_ 
2q(z - a) for every a. Then 

Proof: Denote  by a0 the par t  of a -- U f~i which is contained in the union of 

the sets g~ (z - ai) < 2ri, and set al  = a \ a0 .  Readily, 

g a , ( z - a i ) d z  < 2. ~ I g ~ ( z - a i ) - r i ,  dz. 
1 l 

Now number  r l , . . .  ,rm, so tha t  r l  is maximal,  and ga, (Z-a i )  <_ ri, i = 1 , . . .  l, 

is a maximal  disjoint family with the proper ty  tha t  if the set gaj (z - at) <_ rj 
intersects the set g~(z  - ai) <_ ri for j > i then ry <: ri. We deduce tha t  

l 

~a g a , ( Z - a i ) d z  ~ ~-~ fq q ( z - a i )  dz 
0 i = 0  ( z - -a l )<: r i  

l 

i=O a i ( z - - a i ) < r ~  

where the last expression is readily at most  f~o Iga,(Z -- ai) -- ril dz. | 

Now we have arrived at the core of the argument;  namely, tha t  est imates can 

be transferred from paraboloids to "almost paraboloids".  

We use the  set up of the previous section, and hence T~, n~, and ~ are defined 

as above. 

PROPOSITION 3.2: 

(1 - 0 ( ¢ ) ) ' / ¢  Iff~(Z) - ~ ( z ) l d z  <__ v(T~) < (1 + 0(¢)) .  f~  If~(z) - ~ ( z ) [ d z .  

Proof: We use the notions f~, ~ ,  T~ and q~ without  index. For a vertex u of 

Hi, set A(u) = q(u - ai) - ri, which is in tu rn  equal to f (u)  - ~(u) by definition. 
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First we claim that  for any z E Hi, 

(20) If(z) - ~(z)l = ]q(z - ai) - ril + O(e) max q(y - ai). 
yE1]~ 

We may assume that f '(ai) = 0 and ai is the origin in 1~ d-1. It is sufficient to 

prove that  

(21)  t ~ ( z )  - vii = O ( ~ ) ~ q ( y  - a d. 

Let Ul,. • •, Ud be the vertices of Hi and let v l , . . . ,  Vd be the vertices of T~ so that  

Z = ~ j  8jUj -~ ~ j  t jvj  a n d  

= t j ( g ( v j )  -  (vj) ) 

J 

with ~ j s j  = ~ j t j  -- 1 and sj , t j  >_ O. Since ri = q(uj) - A(uj) and 

q(vj) - A(vj) > ri hold for j = 1, . . .  ,d, we have 

V(z) >_ ~-~tj (q(vj) - A(vj)) 2 ~-~sj (q(uj) - A(ui) ) and 
J J 

V(z) < ~ sj (f(u3) - ~(u3)) . 
J 

We deduce (21) by (18), and in turn (20) follows. 

The inequality IHil- maxzen, q(z) << fn q(z) dz and (20) yield that 

In  ]f(z) - ~ ( z ) , d z  = ] ;  , q ( z - a i ) -  rildz +O(e) £ q ( z - a i ) d z .  
i i i 

Now the lower bound for v(T) is a consequence of Proposition 3.1. 

Turning to the upper bound for v(T), denote by Hi the set of z where 

f (z)  - ~(z) = ga,(z - ai) - ri. Analogously as above, we obtain the formula 

f~  , q ( z - a i ) - r i , d z =  f~  I f ( z ) - ~ ( z ) , d z  + O ( e ) ~  ga , ( z -a i )  dz. 
i i i 

Denote by I* the set of indices j with Hj n f~i ¢ ~ for some f~i corresponding to 

T. Then one can define the sets ~j  for j e I* with respect to {Hi, aj, rj, g~j }je/*. 

Since Ujel* {~J} is contained in ~ for large n, we deduce the upper bound for 

v(T), again by Proposition 3.1. | 

First we prove the upper bound in Theorem 1. When estimating 5(M, Q~), 

we have to be careful what happens when piecing. We separate the part of the 

boundary corresponding to boring patches; here Proposition 2.3 and Lemma 1 
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yield that this part causes a small error. So assume that Z~ is not boring. Then 

on the part which is possibly multiple covered the integral of If - ~ 1  is small 

(see (12) in the proof of Proposition 2.4). We deduce by Proposition 3.2 that  

5(M, _< (t + o 

a + l  
Here n~ ~ na+-~, and hence Proposition 2.5 and (17) yield that 

<_ ( l + O ( E ) ) - l d e l d _ l - E ( d e t q ~ ) Z ~ - l .  IOZ[ ~-+~. 1 2 
d--1 ~ n~ 

d +  1 

= (1 + O (e)).  l l d e l d _ l .  E n(x)d_~d z 1 
2 fl o n~ -x 

Finally, we conclude the upper bound in Theorem 1 by the choice of nz. 

Now we turn to the lower bound in Theorem 1. We deduce by Proposition 3.2 

that  

5(M, Pn) -> (1 + O (¢))'  E v(T3). 

Now Proposition 2.5 yields that 

5(M,P,~) > ( l + O ( s ) )  E ldela-1- (detq~) z~-~-~ -I(I'~l ~d--~-~+-~ • 1 
d + l  [1 1 ~ ~ 

n ~ > n -d"+~ l, - 4~d / 

--2 
We deduce by 5s(M, Pn) << n x=-r and Proposition 2.1 applied to the ~Z's 

a__+A¢l 1 ~ 1L_( l_!  ~ 
that the number of n~ with n~ < na+2,--z~, is at most na+2 ~a'. Now some 

simple calculations and Lemma 1 yield that the area covered by EZ's with nz >_ 
4+1¢ 1 1 

na+~ -z~, is (1 + O (c)). 10MI. Therefore (17) and (5) yield the lower bound in 

Theorem 1. Therefore the proof is complete in case of general approximation if 

the number of vertices is bounded. 

Remark: Assume that  OM is 6 2 Then we use the modified version of Lemma 1, +. 

as it is described in the Remark after it. Now the proof above yields the asymp- 

totic formula (1). 

3.4 INSCRIBED AND CIRCUMSCRIBED POLYTOPES. 

For inscribed (circumscribed) polytopes, we use inscribed (circumscribed) 

power diagrams. Similar arguments work as above, only one needs a little care 

whether piecing keeps the property being inscribed (circumscribed). 



Vol. 117, 2000 ERROR OF POLYTOPAL APPROXIMATION 21 

For inscribed polytopes, the same argument works word by word, as an in- 

scribed polytope gives rise to inscribed power diagrams, and the reverse. 

Let us consider the case of circumscribed polytopes. We claim that  if Pn is a 

circumscribed polytope then each T~ is a circumscribed power diagram. To verify 

this s tatement,  denote by ~* the piecewise linear function which is associated 

to TZ as a power diagram with respect to qz. It  is sufficient to prove tha t  if 

{(uj, ~f~(uj))}, j = 1 , . . . ,  d are vertices of a facet of YZ then conv{(uj, (fl~(Itj))} 
is below the graph of qz. This follows as the graph of ~Z is below the graph of 

f ,  qz(uj) ~*(uj) = f ( u j ) - ~ ( u j )  and 1 - ~q~ > q~ for each z. Therefore the lower 

bounds during the course of the proof can be proved exactly in the same way as 

above. 

In case of the upper  bound, let ~/ > 0 be the constant such that  1 ~qz < 
(1 + -y¢)qz. The main trick is that  we now define TZ with respect to (1 + ~¢)q~. 

This causes only a multiplicative error of 1 + O(g) in the estimate. Now the 

argument presented above shows that  Y~ is circumscribed. 

3.5 THE CASE OF THE FACETS. 

The arguments are basically the same, actually somewhat simpler. Say in this 

case, we consider power diagrams with at most n tiles. 

The correspondence between polytopal hypersurfaces and power diagrams is 

given by (18). More precisely, {Fi}, i = 1 , . . . , n z  is the family of facets such 

that  their projection into H~ intersects (I)~. To each Fi and the corresponding ai 

and ri, we have that  affFi is the graph of f~(ai) + la~(Z - ai)  + ri. When piecing 

patches in the case of facets, we take intersection of the half spaces, which is 

equivalent to considering the union of all {ai,ri} if the pieces are assigned with 

respect to the same quadratic form. 

The proof works the analogous way for general approximation. No changes 

are needed in the argument when passing from general approximation to the 

circumscribed case (here one can actually assume that  ri = 0). 

Next, consider the lower bound for inscribed polytopes. Now tqz 2 > q~ yields 

that  the resulting power diagram is inscribed. More precisely, if (y, fz(y)) is 

below the graph of fz(ai) + la~ (z - a~) + ri then (y, q~(y)) is below the graph of 

q~(ai) + la~ (z - a i )  + ri. Therefore exactly the same argument applies as in the 

general case. 

Finally, for the lower bound, define T~ with respect to (1 + ~g)q~ where lqz 2 
(1 + 3's)qz, and then the resulting polytope is inscribed. 
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3.6 T H E  5w METRIC. 

There exists a general version of the symmetric difference metric: If w(x) is a 

positive continuous function in a neighbourhood of OK in lI( d, then 5~(K, P)  is 

the integral of w(x) on the symmetric difference of K and P. 

Similar arguments as for 5s yield (see 12) that if P~ is the polytope with at 

most n vertices minimizing 5w(M, P~) then 

• w(x)~-Ta(x)d-~dx __2_ (22) 5w(M, Pn) '~ ~ ldeld-1 
M n d-1 

Now (22) can be strengthened similarly for the case of the symmetric difference 

metric. One only needs to assume that w(x) is constant in a neighbourhood of 

EZ up to 1 + O(e) for suitable ¢. 

COROLLARY 1: Assume that OM is C~ and the second fundamental form Q~ 
is a Lipschitz function of x, and w is a positive Lipschitz function in an open 
neighbourhood of OM. If Pn (P(,~)) is the polytope with at most n vertices 
(facets) minimizing 5w(M, Pn ) then 

d + l  

( ( - 1 ) )  ~ ( / o  d+, 1 )x:~ 1 5w(M, Pn)= 1 + O  nsd-2z • ldeld-i, w ( x ) Z : T a ( x ) ~ d x  2 ,  
M n d=l 

d + l  

( (/o 5~(M,P(,o)= 1 + 0  n+~ - 'z -~l&va-1.  w ( x ) ~ ( x ) a - ~ d x  2 . 
M n d - ~  

One may impose the additional condition that Pn is inscribed, or that P,~ is 
circumscribed. 

4. T h e  Lp m e t r i c  

4.1 THE Lt  METRIC• 

In this case, the main tool is polarity. Since 5t (M, P)  is invariant under the 

translation of M and P by the same vector, we may asssume that  the origin o 

lies in the interior of M. 

Define the polar M* of M as 

M* = {x: (x, y) _< l holds V y C M } .  

Then i * *  = i and OM* is also C 2 (see [18]). 

Assume that  P is a polytope containing o in its interior. Then there exists a 

one to one correspondence between the k-faces of P and the (d - 1 - k)-faces of 

P*, and P is circumscribed around M if and only if P* is inscribed into M. 
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Set w(z) = 1/[Iz[[x~+l for z # o. Now the main observation is that  (see 

S. Glasauer and P. M. Gruber [7]) 

(23) 5~ (M, P) = 5w(M*, P*). 

This way the problem of best approximation of X with respect to 51 bounding 

the number of k-faces is translated into best approximation of X* with respect 

to 5~ bounding the number of (d - 1 - k)-faces. 

Therefore (23), the formula (see S. Glasauer and P. M. Gruher [7]) 

- - "  t ~ M * ( Z ) ~ d x  = t C M ( X ) ~ d x  
M* LIxLI 1 M 

and Corollary 1 yield Theorem 2. 

4.1 T H E  Lp METRIC, p > 1. 

Let q be a positive definite quadratic form. What  may sound as a surprise (but 

remember  the case of the L1 metric), we consider circumscribed power diagrams 

with given number of tiles. Assume that  each ri = 0, and hence a power diagram 

in R d -1  is given as T = {Hi ,  ai}, and ~i = Hi. For p > 1, set 

vP(T) = E f~ q(z - ai)Pdz, 
Z i 

and hence v 1 (T) = v(T). Observe that  for A > 0, 

vP(A T) = Ad-1+2p . vP(T). 

If C is a convex body in R d-1 then define 

v~)  (C, q) = min {vP(T): T covers C and has at most n tiles}. 

Note that  if T -- {Hi, a~} is a power diagram with at most n tiles and covering 

C, and vV(T) < 2V~n)(C , q), then the analogue of Proposition 2.2 yields for any 

Hi that  
--2p 

(24) d iaml I  << n(d-1)(d-l+2P). 

Then analogously as for v,~(P, q), we deduce 

PROPOSITION 4.1: In ]I( d - l ,  let P be a parallelotope and Jet q be a positive 

definite quadratic form. If the ratio of the circum- and the inradius with respect 
to q is at most 2v/d then 

( ( )) ~-~+2p 1 
- ,  _ (detq)d-~i. ]C I ~-~ . vP(P,q)= 1 + O  n~°~(~+p) "Cp,d" n ~  
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where Cp,d depends on p and d, and 0( . )  depends on M ,  p and d 

How does it connect to polytopal approximation? Denote by u(x) the exterior 

unit normal at x E cgM. If P C M is a polytope then 

1 

(25) 5p(M, P) = rain (u(x), x - v} p.  g(x) dx 
M v v e t r e x  

So let P~ C M be a polytope with at most n vertices and minimizing 5p(M, P,~). 

Readily, all the vertices are contained in OM. First we describe how to get the 

lower bound. 

It is easy to show that  5p(M, Pn) << n ~-2~ . Since the boundary of M is C~_, 

the analogue of Proposition 2.2 yields that  if F is a facet of such a P then 

--2p 
(26) d i a m  F << n ( ~ - l ) ( d - 1 + 2 " )  . 

P 
So apply Lemma 1 with m = n ~+2, , and constructing disjoint E~'s. Set 

-;o 
= ~ 2 0 d ( d ~ - 2 p ) .  

For given/~, define T~ -- { I l j , a j }  to be the power diagram with respect to qz, 

such that  {(aj,  f~(aj )}  is the the family of vertices of Pn with distance at most 

n ~  from E~. Denote by n~ the number of the tiles of TZ. 

Observe that  if x E E~ and the vertex v minimizes (u (x ) , x  - v) among the 
- 2 p  

vertices of P~ then d(x ,v )  < n(~-1)(d+2.). On the other hand, if d(x, vi) < 
--2p 

n("-~)(d+2p) for a vertex vi and z = (z, f z ( z ) )  then 

(r'(X),X -- Vi} : (1 + O(g))" q~3(Z -- ai). 

Therefore 1 

~p(M, P)  >_ (1 + O(e)) • ~ 2 a-1 det q~. v(T~) 

Now the proof can be finished as in the case of the symmetric difference metric. 
1 -  

N o t e  that  %,4 = ~%,e. 
The upper  bound in Theorem 3 can be verified using the similar alterations of 

the earlier argument as above. 

5. General convex C~ hypersurfaces 

We say that  X is a convex C~_ hypersurface if it is an open, Jordan measurable 

'mbset of a convex body M, the origin lies in the interior of M, and the closure 

of X is contained in an open, C~ subset of aM.  
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Similarly, Y is called a convex polytopal hypersurface if it is a Jordan mea- 

surable subset of a polytope P and the origin lies in the interior of P. If Y 

approximates X then we make the following assumptions: If the approximation 

is with respect to the symmetric difference metric (or 6~) then define Y C OP as 

the radial projection of X. Otherwise, for any x c X consider the points y E OP 

where the exterior normals at x to M are also exterior normals at y to P, and 

Y is the union of these sets. We say that Y is inscribed if Y C M, and Y is 

circumscribed if Y A intM = ~. The faces of Y are the intersections of the faces 

of P with the interior of Y. 

Now we extend the notions of distances to X and Y. Observe that for x E X, 

we have 

hp(u(x))  - hM(u(x))  = m~y (U(x), y -- x). 

SYMMETRIC DIFFERENCE METRIC AND ~w: ~s(X,  Y )  is the volume of the part 

of the cone over X which lies between X and Y, and ~ ( X , Y )  is the integral of 

w on this part. 
1 

np METRIC, p > 1: ~p(X,Y)  = ( f x  Imaxy eY(b'(x),y - x)lP K(x)dx)  ~ 

Observe that if X = OM (and hence Y = OP) then ~(X, Y) = ~(M, P). 

In case of the L1 metric, we have a closer look at the properties of polarity. If 

u -~ o then define u* to be the hyperplane H = {z: (z, u} = 1}, and set H* = u. 

Observe that if v E u* then u E v*. 

Let X be a convex C~_ hypersurface, which then lies on the boundary of a 

convex body M where M contains the origin in its interior. Define X* to be the 

set of polar images of the tangent hyperplanes at the points of X. Then X* is 

also convex C 2 hypersurface lying on the boundary of M* (see [18]). Observe 

that X** = X. 

Let Y C OP be a convex polytopal surface approximating X with respect to 

61. Consider the tangent hyperplanes at the points of Y which are parallel to the 

tangent hyperplane at some point of X, and denote by Y* the set of polar images 

of them. Then Y* C OP* is a convex polytopal hypersurface approximating X* 

in the sense of ~w. 

Now there exists a one to one correspondence between the k-faces of Y whose 

closure does not intersect the boundary of Y and the (d - 1 - k)-faces of Y*. 

Set w(x)  = IlxlI -(a+l) for x ~ o. Then the same argument as above yields that 

~ I ( X , Y )  = ~ , ( X * , Y * ) .  

This way the problem of best approximation of X with respect to 61 bounding 
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the number of k-faces is translated into best approximation of X* with respect 

to 8~o bounding the number of (d - 1 - k)-faces. 

Call a set rectifiable if it is the finite union of images of compact Jordan 

measurable subsets of R d-2 by Lipschitz maps. Note that if a is a rectifiable 

subset of ]~d-i then for small t (see H. Federer [5], but rather prove for yourself), 

(27) [a + tBd-X I <<~ t. 

Therefore, if the boundary of X is rectifiable then it causes a smaller error than 

the error we accumulate otherwise. In particular, the method above for closed 

convex hypersurfaces yields 

COROLLARY 2: Let X be C 2 such that the second fundamental form Q~ is a 

Lipschitz function of x and the boundary of X is rectifiable. Assume that Yn 

is a best approximating surface with respect to the metric 6 having at most n 

vertices. 

(i) / f 6  = 6s then 

d+l 

(_1 1 (ix 6s(X,  Yn) = (1 + O  n 8 7 ) )  . ~ ldeld-1 . t~(x) z-~ dx )  " n "-12--x--'1 

The analogous formula holds if  Yn is assumed to be inscribed or circum- 

scribed, or the number of facets is bounded. 

(ii) If 6 = 61 then 

- 1 1  ( f x  ) ~ 1  8 l ( X , Y , ) =  ( l  + O ( n ~ ) ) ' - ~ l d i v d - l "  t~(x)a~---3dx 2 - 
n d - 1  

The analogous formula holds if  Yn is assumed to be inscribed or circum- 

scribed, or the number of facets is bounded. 

(iii) If p > 1, 6 = 6p and Yn is inscribed then 

d--l+2p 

( ( )) (/x 5p(X, Yn) = 1 + 0 n ~  • cv, d • t~(x) d-'+2, dx " _22-_" 
n a - ~  

Finally, let us formulate the geometric version of Proposition 2.3. This state- 

ment can be useful when piecing patches in later applications. The proof is again 

based on Proposition 2.3, and on subdividing X into almost paraboloid patches. 

P R O P O S I T I O N  5 . 1  : Assume that O M is C~_, and X is an open, Jordan measurable 

subset of OM. Then there exists a A > 0 such that if Y1,.. .  ,Ym are polytopal 

hypersurfaces approximating ~ and the facets of the Yi's have diameter at most 



Vol. 117, 2000 ERROR OF POLYTOPAL APPROXIMATION 27 

A then the polytopal hypersurface Y determined by the vertices of Y 1 , . . . ,  Ym 

satisfies 

5 s ( E , Y )  << 5s(Y1) + " "  + 5s(Y,~). 

ACKNOWLEDCEMENT: The  author  would like to thank Monika Ludwig and 

Peter  Gruber  for many  useful comments.  

R e f e r e n c e s  

[1] F. Aurenhammer, Power diagrams: properties, algorithms and applications, SIAM 

Journal on Computing 16 (1987), 78-96. 

[2] W. Blaschke, Atone Differentialgeometrie, Springer, Berlin, 1923. 

[3] K. BSr6czky, Jr., Approximation of smooth convex bodies, Advances in Mathe- 

matics, to appear. 

[4] K. B6r6czky, Jr., About the error term for best approximation with respect to the 
Hausdorff related metrics, submitted. 

[5] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. 

[6] L. Fejes Tdth, Lagerungen in der Ebene, aufder  Kugel und im Raum, 2nd edition, 

Springer-Verlag, Berlin, 1972. 

[7] S. Glasauer and P. M. Gruber, Asymptotic estimates for best and stepwise 
approximation of convex bodies III, Forum Mathematicum 9 (1997), 383-404. 

[8] H. Groemer, Stability of geometric inequalities, in Handbook of Convex Geometry 
A, North-Holland, Amsterdam, 1993, pp. 125-150. 

[9] P. M. Gruber, Volume approximation of convex bodies by inscribed polytopes, 
Mathematisehe Annalen 281 (1988), 229-245. 

[10] P. M. Gruber, Volume approximation of convex bodies by circumscribed poly- 
topes, in Applied Geometry and Discrete Mathematics, DIMACS Series in Dis- 
crete Mathematics and Theoretical Computer Science 4, American Mathematical 
Society, Providence, RI, 1991, pp. 309-317. 

[11] P. M. Gruber, Aspects of approximation of convex bodies, in Handbook of Convex 
Geometry A, North-Holland, Amsterdam, 1993, pp. 319-345. 

[12] P. M. Gruber, Comparisons of best and random approximation of convex bodies 
by polytopes, Rendiconti del Circolo Matematico di Palermo 50 (1997), 189-216. 

[13] K. Leichtweig, Affine Geometry of Convex Bodies, Johann Ambrosius Barth 
Verlag, Heidelberg, Leipzig, 1998. 

[14] M. Ludwig, Asymptotic approximation of convex curves, Archiv der Mathematik 
63 (1994), 377-384. 



28 K. BOROCZKY Isr. 3. Math. 

[15] M. Ludwig, Asymptotic approximation of smooth convex bodies by general poly- 

topes, Mathematik~, to appear. 

[16] E. Lutwak, Extended surface area, Advances in Mathematics 85 (1991), 39 68. 

[17] D. E. McClure and R. A. Vitale, Polygonal approximation of plane convex bodies, 

Journal of Mathematical Analysis and Applications 51 (1975), 326-358. 

[18] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge 

University Press, Cambridge, 1993. 


